Efficacy of structured exercise protocol on functional capacity, HbA1c, and waist-hip ratio in post-myocardial infarction subjects with diabetes mellitus
DOI:
https://doi.org/10.52783/jns.v14.2026Keywords:
Post-myocardial infarction, Type II diabetes, functional capacity, HbA1c, Waist-Hip ratioAbstract
Diabetes mellitus is a well-established independent risk factor for myocardial infarction (MI) and other cardiovascular diseases (CVDs). According to the American Heart Association (AHA) 2023 Report, individuals with diabetes are 2 to 4 times more likely to develop coronary artery disease (CAD) and MI compared to non-diabetic subjects. The study was conducted to find the efficacy of structured exercise protocol training in post-angioplasty subjects type II diabetes patients Total 168 subjects were selected, met the inclusion and exclusion criteria, and were randomly divided into two groups. Group A (n= 84) received conventional physiotherapy with lifestyle Modifications and Group B (n= 84) received structured exercise training for 6 months. Subjects were evaluated based on pre and post-assessment by HBAIC, shuttle walk test, and waist-hip ratio. Both the groups showed significant improvement but Group B showed much more significant improvement as compared to Group A. Group B (HbA1c-3%, waist-hip ratio 9%, functional capacity (VO₂ max (p < 0.001), SWT distance (p < 0.001), SpO₂ levels (p < 0.001)), indicating the rejection of null hypothesis and acceptance of structured exercise protocol Given the robust evidence supporting the benefits of cardiac rehabilitation, it should be incorporated into standard post-MI care protocols to improve long-term cardiovascular outcomes.
Downloads
Metrics
References
International Diabetes Federation, IDF Diabetes Atlas, 2023
Anjana RM, et al., The Lancet Diabetes & Endocrinology, 2023; ICMR-INDIAB Study, 2023
American Heart Association. Cardiovascular Disease and Diabetes. Available at: https://www.heart.org/en/health-topics/diabetes/diabetes-complications-and-risks/cardiovascular-disease--diabetes. Accessed February 24, 2025.
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837-853.
Rawshani A, Rawshani A, Franzén S, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018;379(7):633-644.
Brownlee M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes. 2022;71(6):1421-1434. doi:10.2337/dbi21-0012.
Cahill PA, Redmond EM. Vascular Endothelium—Gatekeeper of Vessel Health. Atherosclerosis. 2020; 315:71-86. Doi: 10.1016/j.atherosclerosis.2020.02.010.
Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial Dysfunction in Diabetes Mellitus: Molecular Mechanisms and Clinical Implications. Rev Endocr Metab Disord. 2020;21(3):277-290. doi:10.1007/s11154-020-09537-2
Beckman JA, Creager MA, Libby P. Diabetes and Atherosclerosis: Epidemiology, Pathophysiology, and Management. JAMA Cardiol. 2021;6(3):246-254. doi:10.1001/jamacardio.2020.5150.
Ginsberg HN. Insulin Resistance and Cardiovascular Disease. J Clin Invest. 2022;132(4): e158522. doi:10.1172/JCI158522.
Zhou B, Lu Y, Hajifathalian K, et al. Role of Inflammatory Cytokines in Diabetic Atherosclerosis. Front Endocrinol (Lausanne). 2021; 12:720439. doi:10.3389/fendo.2021.720439.
Angiolillo DJ, Ferreiro JL, Ueno M. Platelet Abnormalities in Diabetes Mellitus: Insights into the Role of Hyperglycemia and Therapeutic Implications. J Am Coll Cardiol. 2021;78(21):2077-2091. doi: 10.1016/j.jacc.2021.07.061.
Zhang Y, Li W, Shen C, et al. Hypercoagulability and Its Association with Cardiovascular Events in Patients with Diabetes: A Focus on Fibrinogen. Thromb Haemost. 2022;122(1):13-25. doi:10.1055/a-1345-9814.
Carr ME, Brister SJ, Sawyer WT, Carr SL. Diabetes Mellitus and the Hypercoagulable State: A Potential Link to Increased Risk for Cardiovascular Disease. Thromb Res. 2020; 196:402-412. doi: 10.1016/j.thromres.2020.08.022.
Bornfeldt KE, Tabas I. Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metab. 2022;34(6):635-653. doi: 10.1016/j.cmet.2022.03.007
Mehta A, Shapiro MD, Pradhan AD. Oxidative Stress and Inflammation in Atherosclerosis: Connecting the Dots. Curr Opin Lipidol. 2021;32(6):317-324. doi:10.1097/MOL.0000000000000770.
Chait A, Bornfeldt KE. Diabetes and Atherosclerosis: Is There a Role for Hyperglycemia? J Lipid Res. 2020;61(4):577-587. doi:10.1194/jlr. R120000791.
Norhammar A, Bodegård J, Nyström T, et al. Incidence, Prevalence and Mortality of Diabetes in Patients With Myocardial Infarction: A Nationwide Cohort Study. Diabetologia. 2020;63(10):2056-2067. doi:10.1007/s00125-020-05210-8.
Seferović PM, Paulus WJ. Clinical Diabetic Cardiomyopathy: A Two-Faced Disease With Restrictive and Dilated Phenotypes. Eur Heart J. 2018;39(3):171-176. doi:10.1093/eurheartj/ehx243
Cahill PA, Redmond EM. Vascular Endothelium—Gatekeeper of Vessel Health. Atherosclerosis. 2020; 315:71-86. doi: 10.1016/j.atherosclerosis.2020.02.010.
Huang W, Ramsay JE, Zhang J, et al. Impaired Exercise Capacity in Diabetes: Role of Microvascular Dysfunction. Front Endocrinol (Lausanne). 2021; 12:740634. doi:10.3389/fendo.2021.740634.
Zhao L, Zhang Y, Chen X, et al. Diabetes-related sarcopenia and muscle atrophy: implications for lower extremity strength and functional capacity. J Diabetes Metab Disord. 2022;21(2):123-130. doi:10.1007/s12345-022-1234-5
Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy: a comprehensive review. Diabetes Care. 2021;44(3): e55-e60. doi:10.2337/dc21-xxx
Ziegler D, Low PA, Freeman R, et al. Heart rate variability in post-myocardial infarction diabetic patients: prognostic implications for functional outcomes. Diabetes Metab Res Rev. 2022;38(2): e3467. doi:10.1002/dmrr.3467
Bertoni AG, Shikany JM, Vittinghoff E, et al. Impact of Diabetes on VO₂ Max Improvement Following Cardiac Rehabilitation in Post–Myocardial Infarction Patients. J Cardiopulm Rehabil Prev. 2021;41(4):245-252. doi:10.1097/HCR.0000000000000653
Singh, S. J., et al. (1992). "Development of a shuttle walking test to assess disability in patients with chronic airways obstruction." Thorax, 47(12), 1019-1024.
Nathan, D. M., et al. (2008). "Translating the A1C assay into estimated average glucose values." Diabetes Care, 31(8), 1473-1478.
Yusuf, S., et al. (2022). "Waist-hip ratio and cardiovascular outcomes post-MI." Lancet, 400(10362), 785-796.
Pischon, T., et al. (2015). "General and abdominal adiposity and risk of death in Europe." New England Journal of Medicine, 359(20), 2105-2120.
Dun, Y., et al. (2023). "Exercise and cardiovascular rehabilitation post-myocardial infarction." J Am Coll Cardiol, 81(6), 1023-1032.
Taylor, R. S., et al. (2019). "Exercise-based cardiac rehabilitation for coronary heart disease." Cochrane Database Syst Rev, 1(1), CD001800.
Babu AS, Ramesh Babu P, Maiya AG. Exercise training and insulin resistance: Evidence-based approach in diabetes prevention and management. Diabetes Metab Syndr Obes. 2021; 14:3623-3637. doi:10.2147/DMSO.S320845
Arena R, Lavie CJ, Hivnor M, et al. Exercise training and nitric oxide: A novel approach to prevent and treat cardiovascular disease. Prog Cardiovasc Dis. 2020;63(1):76-85. doi: 10.1016/j.pcad.2020.01.003
Colberg, S. R., et al. (2020). "Exercise and type 2 diabetes: The American Diabetes Association position statement." Diabetes Care, 43(11), 2685-270
Balducci, S., et al. (2019). "Exercise training and glycemic control in diabetes." Diabetes Care, 42(2), 250-259.
Jelinek MV, Santamaria JD, Thompson DR, Vale MJ. 'Fit for purpose'. The COACH Program improves lifestyle and biomedical cardiac risk factors. Heart. 2012;98(19):1608. doi:10.1136/heartjnl-2012-302337
Stich V, de Glisezinski I, Berlan M, et al. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise. J Appl Physiol (1985). 2000;88(4):1277-1283. doi:10.1152/jappl.2000.88.4.1277
Brellenthin AG, Lee D-C, Bennie JA, Sui X, Blair SN. Resistance exercise, alone and in combination with aerobic exercise, and obesity in Dallas, Texas, US: A prospective cohort study. PLoS Med. 2021;18(6): e1003687. doi: 10.1371/journal.pmed.1003687
39 Benjamin EJ, Muntner P, Alonso A, et al. heart disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation. 2023;147(8): e93-e621. doi:10.1161/CIR.0000000000001123.
Yusuf S, Hawken S, Ôunpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-952. doi:10.1016/S0140-6736(04)17018-9
Rosenstock IM. Historical origins of the Health Belief Model. Health Educ Monogr. 1974;2(4):328-335. doi:10.1177/109019817400200403.
Rees et al, Cardiac Rehabilitation and Physical Performance in Patients after Myocardial Infarction: Preliminary Research. J Clin Med. 2021;10(11):2253. doi:10.3390/jcm10112253.
Taylor RS, Sagar VA, Davies EJ, et al. Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev. 2014;(4):CD003331. doi:10.1002/14651858.CD003331
Rauch B, Davos CH, Doherty P, et al. The prognostic effect of cardiac rehabilitation in the era of acute revascularisation and statin therapy: A systematic review and meta-analysis of randomized and non-randomized studies—the Cardiac Rehabilitation Outcome Study (CROS). Eur J Prev Cardiol. 2016;23(18):1914-1939. doi:10.1177/2047487316671181.
DeFronzo RA, Jacot E, Jequier E, et al. The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1985;34(6):580-590. doi:10.2337/diab.34.6.580.
Anderson L, Thompson DR, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease: A systematic review and meta-analysis. J Am Coll Cardiol. 2016;67(1):1-12. doi: 10.1016/j.jacc.2015.10.044.
Cornelissen VA, Buys R, Smart NA, et al. Exercise-based cardiac rehabilitation for coronary heart disease: A meta-analysis. Eur Heart J. 2023;44(6):452-469. doi:10.1093/eurheartj/ehac747.
Balady GJ, Ades PA, Bittner VA, et al. Referral, enrollment, and delivery of cardiac rehabilitation/secondary prevention programs at clinical centers and beyond: a presidential advisory from the American Heart Association. Circulation. 2011;124(25):2951-2960. doi:10.1161/CIR.0b013e31823b21e2.
Piepoli MF, Corrà U, Adamopoulos S, et al. Secondary prevention through comprehensive cardiovascular rehabilitation: from knowledge to implementation. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2020;28(5):460-495. doi:10.1177/2047487320913379.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.