Efficacy of structured exercise protocol on functional capacity, HbA1c, and waist-hip ratio in post-myocardial infarction subjects with diabetes mellitus

Authors

  • Poovishnu Devi Thangavelu
  • Virendra C Patil
  • Janhavee Brahmadande
  • Jai Kadam
  • Maitreyi Kamble
  • Shukrangi Shende
  • Kiran Dhaygude
  • Rushikesh Patil

DOI:

https://doi.org/10.52783/jns.v14.2026

Keywords:

Post-myocardial infarction, Type II diabetes, functional capacity, HbA1c, Waist-Hip ratio

Abstract

Diabetes mellitus is a well-established independent risk factor for myocardial infarction (MI) and other cardiovascular diseases (CVDs). According to the American Heart Association (AHA) 2023 Report, individuals with diabetes are 2 to 4 times more likely to develop coronary artery disease (CAD) and MI compared to non-diabetic subjects. The study was conducted to find the efficacy of structured exercise protocol training in post-angioplasty subjects type II diabetes patients Total 168 subjects were selected, met the inclusion and exclusion criteria, and were randomly divided into two groups. Group A (n= 84) received conventional physiotherapy with lifestyle Modifications and Group B (n= 84) received structured exercise training for 6 months. Subjects were evaluated based on pre and post-assessment by HBAIC, shuttle walk test, and waist-hip ratio. Both the groups showed significant improvement but Group B showed much more significant improvement as compared to Group A. Group B (HbA1c-3%, waist-hip ratio 9%, functional capacity (VO₂ max (p < 0.001), SWT distance (p < 0.001), SpO₂ levels (p < 0.001)), indicating the rejection of null hypothesis and acceptance of structured exercise protocol Given the robust evidence supporting the benefits of cardiac rehabilitation, it should be incorporated into standard post-MI care protocols to improve long-term cardiovascular outcomes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

International Diabetes Federation, IDF Diabetes Atlas, 2023

Anjana RM, et al., The Lancet Diabetes & Endocrinology, 2023; ICMR-INDIAB Study, 2023

American Heart Association. Cardiovascular Disease and Diabetes. Available at: https://www.heart.org/en/health-topics/diabetes/diabetes-complications-and-risks/cardiovascular-disease--diabetes. Accessed February 24, 2025.

UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837-853.

Rawshani A, Rawshani A, Franzén S, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018;379(7):633-644.

Brownlee M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes. 2022;71(6):1421-1434. doi:10.2337/dbi21-0012.

Cahill PA, Redmond EM. Vascular Endothelium—Gatekeeper of Vessel Health. Atherosclerosis. 2020; 315:71-86. Doi: 10.1016/j.atherosclerosis.2020.02.010.

Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial Dysfunction in Diabetes Mellitus: Molecular Mechanisms and Clinical Implications. Rev Endocr Metab Disord. 2020;21(3):277-290. doi:10.1007/s11154-020-09537-2

Beckman JA, Creager MA, Libby P. Diabetes and Atherosclerosis: Epidemiology, Pathophysiology, and Management. JAMA Cardiol. 2021;6(3):246-254. doi:10.1001/jamacardio.2020.5150.

Ginsberg HN. Insulin Resistance and Cardiovascular Disease. J Clin Invest. 2022;132(4): e158522. doi:10.1172/JCI158522.

Zhou B, Lu Y, Hajifathalian K, et al. Role of Inflammatory Cytokines in Diabetic Atherosclerosis. Front Endocrinol (Lausanne). 2021; 12:720439. doi:10.3389/fendo.2021.720439.

Angiolillo DJ, Ferreiro JL, Ueno M. Platelet Abnormalities in Diabetes Mellitus: Insights into the Role of Hyperglycemia and Therapeutic Implications. J Am Coll Cardiol. 2021;78(21):2077-2091. doi: 10.1016/j.jacc.2021.07.061.

Zhang Y, Li W, Shen C, et al. Hypercoagulability and Its Association with Cardiovascular Events in Patients with Diabetes: A Focus on Fibrinogen. Thromb Haemost. 2022;122(1):13-25. doi:10.1055/a-1345-9814.

Carr ME, Brister SJ, Sawyer WT, Carr SL. Diabetes Mellitus and the Hypercoagulable State: A Potential Link to Increased Risk for Cardiovascular Disease. Thromb Res. 2020; 196:402-412. doi: 10.1016/j.thromres.2020.08.022.

Bornfeldt KE, Tabas I. Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metab. 2022;34(6):635-653. doi: 10.1016/j.cmet.2022.03.007

Mehta A, Shapiro MD, Pradhan AD. Oxidative Stress and Inflammation in Atherosclerosis: Connecting the Dots. Curr Opin Lipidol. 2021;32(6):317-324. doi:10.1097/MOL.0000000000000770.

Chait A, Bornfeldt KE. Diabetes and Atherosclerosis: Is There a Role for Hyperglycemia? J Lipid Res. 2020;61(4):577-587. doi:10.1194/jlr. R120000791.

Norhammar A, Bodegård J, Nyström T, et al. Incidence, Prevalence and Mortality of Diabetes in Patients With Myocardial Infarction: A Nationwide Cohort Study. Diabetologia. 2020;63(10):2056-2067. doi:10.1007/s00125-020-05210-8.

Seferović PM, Paulus WJ. Clinical Diabetic Cardiomyopathy: A Two-Faced Disease With Restrictive and Dilated Phenotypes. Eur Heart J. 2018;39(3):171-176. doi:10.1093/eurheartj/ehx243

Cahill PA, Redmond EM. Vascular Endothelium—Gatekeeper of Vessel Health. Atherosclerosis. 2020; 315:71-86. doi: 10.1016/j.atherosclerosis.2020.02.010.

Huang W, Ramsay JE, Zhang J, et al. Impaired Exercise Capacity in Diabetes: Role of Microvascular Dysfunction. Front Endocrinol (Lausanne). 2021; 12:740634. doi:10.3389/fendo.2021.740634.

Zhao L, Zhang Y, Chen X, et al. Diabetes-related sarcopenia and muscle atrophy: implications for lower extremity strength and functional capacity. J Diabetes Metab Disord. 2022;21(2):123-130. doi:10.1007/s12345-022-1234-5

Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy: a comprehensive review. Diabetes Care. 2021;44(3): e55-e60. doi:10.2337/dc21-xxx

Ziegler D, Low PA, Freeman R, et al. Heart rate variability in post-myocardial infarction diabetic patients: prognostic implications for functional outcomes. Diabetes Metab Res Rev. 2022;38(2): e3467. doi:10.1002/dmrr.3467

Bertoni AG, Shikany JM, Vittinghoff E, et al. Impact of Diabetes on VO₂ Max Improvement Following Cardiac Rehabilitation in Post–Myocardial Infarction Patients. J Cardiopulm Rehabil Prev. 2021;41(4):245-252. doi:10.1097/HCR.0000000000000653

Singh, S. J., et al. (1992). "Development of a shuttle walking test to assess disability in patients with chronic airways obstruction." Thorax, 47(12), 1019-1024.

Nathan, D. M., et al. (2008). "Translating the A1C assay into estimated average glucose values." Diabetes Care, 31(8), 1473-1478.

Yusuf, S., et al. (2022). "Waist-hip ratio and cardiovascular outcomes post-MI." Lancet, 400(10362), 785-796.

Pischon, T., et al. (2015). "General and abdominal adiposity and risk of death in Europe." New England Journal of Medicine, 359(20), 2105-2120.

Dun, Y., et al. (2023). "Exercise and cardiovascular rehabilitation post-myocardial infarction." J Am Coll Cardiol, 81(6), 1023-1032.

Taylor, R. S., et al. (2019). "Exercise-based cardiac rehabilitation for coronary heart disease." Cochrane Database Syst Rev, 1(1), CD001800.

Babu AS, Ramesh Babu P, Maiya AG. Exercise training and insulin resistance: Evidence-based approach in diabetes prevention and management. Diabetes Metab Syndr Obes. 2021; 14:3623-3637. doi:10.2147/DMSO.S320845

Arena R, Lavie CJ, Hivnor M, et al. Exercise training and nitric oxide: A novel approach to prevent and treat cardiovascular disease. Prog Cardiovasc Dis. 2020;63(1):76-85. doi: 10.1016/j.pcad.2020.01.003

Colberg, S. R., et al. (2020). "Exercise and type 2 diabetes: The American Diabetes Association position statement." Diabetes Care, 43(11), 2685-270

Balducci, S., et al. (2019). "Exercise training and glycemic control in diabetes." Diabetes Care, 42(2), 250-259.

Jelinek MV, Santamaria JD, Thompson DR, Vale MJ. 'Fit for purpose'. The COACH Program improves lifestyle and biomedical cardiac risk factors. Heart. 2012;98(19):1608. doi:10.1136/heartjnl-2012-302337

Stich V, de Glisezinski I, Berlan M, et al. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise. J Appl Physiol (1985). 2000;88(4):1277-1283. doi:10.1152/jappl.2000.88.4.1277

Brellenthin AG, Lee D-C, Bennie JA, Sui X, Blair SN. Resistance exercise, alone and in combination with aerobic exercise, and obesity in Dallas, Texas, US: A prospective cohort study. PLoS Med. 2021;18(6): e1003687. doi: 10.1371/journal.pmed.1003687

39 Benjamin EJ, Muntner P, Alonso A, et al. heart disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation. 2023;147(8): e93-e621. doi:10.1161/CIR.0000000000001123.

Yusuf S, Hawken S, Ôunpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-952. doi:10.1016/S0140-6736(04)17018-9

Rosenstock IM. Historical origins of the Health Belief Model. Health Educ Monogr. 1974;2(4):328-335. doi:10.1177/109019817400200403.

Rees et al, Cardiac Rehabilitation and Physical Performance in Patients after Myocardial Infarction: Preliminary Research. J Clin Med. 2021;10(11):2253. doi:10.3390/jcm10112253.

Taylor RS, Sagar VA, Davies EJ, et al. Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev. 2014;(4):CD003331. doi:10.1002/14651858.CD003331

Rauch B, Davos CH, Doherty P, et al. The prognostic effect of cardiac rehabilitation in the era of acute revascularisation and statin therapy: A systematic review and meta-analysis of randomized and non-randomized studies—the Cardiac Rehabilitation Outcome Study (CROS). Eur J Prev Cardiol. 2016;23(18):1914-1939. doi:10.1177/2047487316671181.

DeFronzo RA, Jacot E, Jequier E, et al. The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1985;34(6):580-590. doi:10.2337/diab.34.6.580.

Anderson L, Thompson DR, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease: A systematic review and meta-analysis. J Am Coll Cardiol. 2016;67(1):1-12. doi: 10.1016/j.jacc.2015.10.044.

Cornelissen VA, Buys R, Smart NA, et al. Exercise-based cardiac rehabilitation for coronary heart disease: A meta-analysis. Eur Heart J. 2023;44(6):452-469. doi:10.1093/eurheartj/ehac747.

Balady GJ, Ades PA, Bittner VA, et al. Referral, enrollment, and delivery of cardiac rehabilitation/secondary prevention programs at clinical centers and beyond: a presidential advisory from the American Heart Association. Circulation. 2011;124(25):2951-2960. doi:10.1161/CIR.0b013e31823b21e2.

Piepoli MF, Corrà U, Adamopoulos S, et al. Secondary prevention through comprehensive cardiovascular rehabilitation: from knowledge to implementation. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2020;28(5):460-495. doi:10.1177/2047487320913379.

Downloads

Published

2025-03-10

How to Cite

1.
Devi Thangavelu P, C Patil V, Brahmadande J, Kadam J, Kamble M, Shende S, Dhaygude K, Patil R. Efficacy of structured exercise protocol on functional capacity, HbA1c, and waist-hip ratio in post-myocardial infarction subjects with diabetes mellitus. J Neonatal Surg [Internet]. 2025Mar.10 [cited 2025Mar.20];14(5S):222-37. Available from: https://jneonatalsurg.com/index.php/jns/article/view/2026