Amorphophallus Konjac as a Natural Modulator of Inflammation and Immunity in Cancer Therapy

Authors

  • Sugeng Mashudi
  • Dianita Rifqia Putri
  • Laily Isroi’n

Keywords:

Amorphophallus Konjac, Anti-Inflammatory, Immune Regulation, Cancer, Konjac glucomannan

Abstract

Amorphophallus konjac is a perennial plant whose bioactive component, konjac glucomannan (KGM), has garnered increasing attention due to its broad therapeutic potential. While KGM has been traditionally utilised in East Asian medicine for detoxification and metabolic regulation, recent studies have highlighted its significant anti-inflammatory and immunomodulatory properties. This review aims to provide a focused synthesis of current evidence on the role of A. konjac and KGM in modulating immune responses and alleviating inflammation-related disorders. KGM has demonstrated efficacy in reducing pro-inflammatory cytokines such as TNF-α, IL-1β, IL-4, and IL-13, particularly in experimental models of colitis, atopic dermatitis, and skin inflammation. Additionally, KGM contributes to gut immune homeostasis by enhancing the growth of beneficial gut microbiota and promoting the production of short-chain fatty acids (SCFAs), which are key mediators in immune tolerance and mucosal defence. The polysaccharide also supports the activity of T-cells and macrophages, regulating the balance between pro-inflammatory and regulatory immune pathways. Beyond its localised effects, KGM exhibits systemic immunomodulatory benefits, suggesting a role in the prevention or adjunctive treatment of autoimmune and allergic conditions. Moreover, its application in wound healing further demonstrates its anti-inflammatory profile and biocompatibility. Despite its promising benefits, factors such as individual variability in immune responses and potential interactions with pharmacological agents necessitate further investigation. Future research should emphasise clinical trials to validate its therapeutic efficacy, dosage optimisation, and potential as a functional food or nutraceutical. In conclusion, A. konjac and its active compound, KGM, represent a compelling plant-based strategy for managing inflammation and supporting immune health through multifaceted mechanisms rooted in gut-immune interactions

Downloads

Download data is not yet available.

References

Abdelhalim, K. A. (2024). Short-chain fatty acids (SCFAs) from gastrointestinal disorders, metabolism, epigenetics, central nervous system to cancer—A mini-review. Chemico-Biological Interactions, 388, 110851. https://doi.org/10.1016/j.cbi.2023.110851

Ahmadi, N., Jahantigh, H. R., Noorbazargan, H., Yazdi, M. H., & Mahdavi, M. (2022). Glucomannan as a Dietary Supplement for Treatment of Breast Cancer in a Mouse Model. Vaccines, 10(10), 1746. https://doi.org/10.3390/vaccines10101746

Beteri, B., Barone, M., Turroni, S., Brigidi, P., Tzortzis, G., Vulevic, J., Sekulic, K., Motei, D.-E., & Costabile, A. (2024). Impact of Combined Prebiotic Galacto-Oligosaccharides and Bifidobacterium breve-Derived Postbiotic on Gut Microbiota and HbA1c in Prediabetic Adults: A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients, 16(14), 2205. https://doi.org/10.3390/nu16142205

Brown, E. M., Kenny, D. J., & Xavier, R. J. (2019). Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annual Review of Immunology, 37(1), 599–624. https://doi.org/10.1146/annurev-immunol-042718-041841

Changchien, C.-H., Wang, C.-H., & Chen, H. (2021). Konjac glucomannan polysaccharide and inulin oligosaccharide ameliorate dextran sodium sulfate-induced colitis and alterations in fecal microbiota and short-chain fatty acids in C57BL/6J mice. BioMedicine, 11(3), 23–30. https://doi.org/10.37796/2211-8039.1191

Charles-Messance, H., Mitchelson, K. A. J., De Marco Castro, E., Sheedy, F. J., & Roche, H. M. (2020). Regulating metabolic inflammation by nutritional modulation. Journal of Allergy and Clinical Immunology, 146(4), 706–720. https://doi.org/10.1016/j.jaci.2020.08.013

Chen, W., An, D., Ye, S., Li, S., Li, J., & Li, B. (2025). Fenugreek gum improves the rheological properties of konjac glucomannan in dynamic simulated digestion system and delays its gastric emptying. International Journal of Biological Macromolecules, 288, 138713. https://doi.org/10.1016/j.ijbiomac.2024.138713

Cui, X., & Cong, Y. (2025). Role of Gut Microbiota in the Development of Some Autoimmune Diseases. Journal of Inflammation Research, Volume 18, 4409–4419. https://doi.org/10.2147/JIR.S515618

Danalakoti, K., Avinashe, H. A., & Dubey, N. (2023). Konjac glucomannan: Extraction, structural properties, and its applications. In Natural Gums (pp. 339–346). Elsevier. https://doi.org/10.1016/B978-0-323-99468-2.00012-7

Devaraj, R. D., Reddy, C. K., & Xu, B. (2019). Health-promoting effects of konjac glucomannan and its practical applications: A critical review. International Journal of Biological Macromolecules, 126, 273–281. https://doi.org/10.1016/j.ijbiomac.2018.12.203

Dou, Z., Zheng, H., Shi, Y., Li, Y., & Jia, J. (2024). Analysis of global prevalence, DALY and trends of inflammatory bowel disease and their correlations with sociodemographic index: Data from 1990 to 2019. Autoimmunity Reviews, 23(11), 103655. https://doi.org/10.1016/j.autrev.2024.103655

Drewes, A. M., Olesen, A. E., Farmer, A. D., Szigethy, E., Rebours, V., & Olesen, S. S. (2020). Gastrointestinal pain. Nature Reviews Disease Primers, 6(1), 1. https://doi.org/10.1038/s41572-019-0135-7

Du, Y., He, C., An, Y., Huang, Y., Zhang, H., Fu, W., Wang, M., Shan, Z., Xie, J., Yang, Y., & Zhao, B. (2024a). The Role of Short Chain Fatty Acids in Inflammation and Body Health. International Journal of Molecular Sciences, 25(13), 7379. https://doi.org/10.3390/ijms25137379

Du, Y., He, C., An, Y., Huang, Y., Zhang, H., Fu, W., Wang, M., Shan, Z., Xie, J., Yang, Y., & Zhao, B. (2024b). The Role of Short Chain Fatty Acids in Inflammation and Body Health. International Journal of Molecular Sciences, 25(13), 7379. https://doi.org/10.3390/ijms25137379

Effect of Selenium-Rich Konjac Glucomannan on Intestinal Microbial Diversity in Mice. (2023). JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 37(6).

https://doi.org/10.23812/j.biol.regul.homeost.agents.20233706.285

Evangelisti, C., & Martelli, Alberto. M. (2023). The PI3K/Akt/mTOR Pathway. In Encyclopedia of Cell Biology (pp. 153–161). Elsevier. https://doi.org/10.1016/B978-0-12-821618-7.00081-X

Hayeeawaema, F., Wichienchot, S., & Khuituan, P. (2020). Amelioration of gut dysbiosis and gastrointestinal motility by konjac oligo-glucomannan on loperamide-induced constipation in mice. Nutrition, 73, 110715. https://doi.org/10.1016/j.nut.2019.110715

Higashio, H., Yokoyama, T., & Saino, T. (2024). A convenient fluorimetry-based degranulation assay using RBL-2H3 cells. Bioscience, Biotechnology, and Biochemistry, 88(2), 181–188. https://doi.org/10.1093/bbb/zbad160

Hu, M., Alashkar Alhamwe, B., Santner-Nanan, B., Miethe, S., Harb, H., Renz, H., Potaczek, D. P., & Nanan, R. K. (2022). Short-Chain Fatty Acids Augment Differentiation and Function of Human Induced Regulatory T Cells. International Journal of Molecular Sciences, 23(10), 5740. https://doi.org/10.3390/ijms23105740

Hu, Q., Huang, G., & Huang, H. (2025). Extraction, structure, activity and application of konjac glucomannan. Ultrasonics Sonochemistry, 116, 107315. https://doi.org/10.1016/j.ultsonch.2025.107315

Iweala, O. I., & Nagler, C. R. (2019). The Microbiome and Food Allergy. Annual Review of Immunology, 37(1), 377–403. https://doi.org/10.1146/annurev-immunol-042718-041621

Jain, A., Sarsaiya, S., Gong, Q., Wu, Q., & Shi, J. (2025). Amorphophallus konjac: Traditional uses, bioactive potential, and emerging health applications. Frontiers in Plant Science, 16, 1530814. https://doi.org/10.3389/fpls.2025.1530814

Jin, J., Sunusi, S., & Lu, H. (2022). Group 2 innate lymphoid cells (ILC2s) are important in typical type 2 immune-mediated diseases and an essential therapeutic target. Journal of International Medical Research, 50(1), 03000605211053156. https://doi.org/10.1177/03000605211053156

Kapoor, D. U., Sharma, H., Maheshwari, R., Pareek, A., Gaur, M., Prajapati, B. G., Castro, G. R., Thanawuth, K., Suttiruengwong, S., & Sriamornsak, P. (2024). Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications. Carbohydrate Polymers, 339, 122266.

https://doi.org/10.1016/j.carbpol.2024.122266

Khan, H. & Marya. (2019). Konjac (Amorphophallus konjac). In Nonvitamin and Nonmineral Nutritional Supplements (pp. 307–312). Elsevier. https://doi.org/10.1016/B978-0-12-812491-8.00044-8

Li, H., Liang, X., Chen, Y., Liu, K., Fu, X., Zhang, C., Wang, X., & Yang, J. (2023a). Synergy of antioxidant and M2 polarization in polyphenol‐modified konjac glucomannan dressing for remodeling wound healing microenvironment. Bioengineering & Translational Medicine, 8(2), e10398. https://doi.org/10.1002/btm2.10398

Li, H., Liang, X., Chen, Y., Liu, K., Fu, X., Zhang, C., Wang, X., & Yang, J. (2023b). Synergy of antioxidant and M2 polarization in polyphenol‐modified konjac glucomannan dressing for remodeling wound healing microenvironment. Bioengineering & Translational Medicine, 8(2), e10398. https://doi.org/10.1002/btm2.10398

Li, H., Liang, X., Chen, Y., Liu, K., Fu, X., Zhang, C., Wang, X., & Yang, J. (2023c). Synergy of antioxidant and M2 polarization in polyphenol‐modified konjac glucomannan dressing for remodeling wound healing microenvironment. Bioengineering & Translational Medicine, 8(2), e10398. https://doi.org/10.1002/btm2.10398

Li, X., Ma, J., Leng, L., Han, M., Li, M., He, F., & Zhu, Y. (2022). MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis. Frontiers in Genetics, 13, 806842. https://doi.org/10.3389/fgene.2022.806842

Li, Y., Kang, Y., Du, Y., Chen, M., Guo, L., Huang, X., Li, T., Chen, S., Yang, F., Yu, F., Hong, J., & Kong, X. (2022). Effects of Konjaku Flour on the Gut Microbiota of Obese Patients. Frontiers in Cellular and Infection Microbiology, 12, 771748. https://doi.org/10.3389/fcimb.2022.771748

Ogris, C., Hu, Y., Arloth, J., & Müller, N. S. (2021). Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data. Scientific Reports, 11(1), 6806. https://doi.org/10.1038/s41598-021-85544-4

Pan, X., Zong, Q., Liu, C., Wu, H., Fu, B., Wang, Y., Sun, W., & Zhai, Y. (2024). Konjac glucomannan exerts regulatory effects on macrophages and its applications in biomedical engineering. Carbohydrate Polymers, 345, 122571. https://doi.org/10.1016/j.carbpol.2024.122571

Piovani, D., Danese, S., Peyrin‐Biroulet, L., & Bonovas, S. (2020). Inflammatory bowel disease: Estimates from the global burden of disease 2017 study. Alimentary Pharmacology & Therapeutics, 51(2), 261–270. https://doi.org/10.1111/apt.15542

Robert Antony, A., Prasannakumar, P., Ameena, I., Sruthi, M., Merlin, T., Ardra, A. P., & Aswathy Surendran, K. (2024). Medicinal and Nutritional Importance of Amorphophallus campanulatus in Human Health. In M. A. Ansari, S. Shoaib, & N. Islam (Eds.), Medicinal Plants and their Bioactive Compounds in Human Health: Volume 1 (pp. 107–122). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-6895-0_6

Setyo Adiguna, G., Praseptiangga, D., Purwanto, E., & Panatarani, C. (2024). Effect of KCl Concentration on Physicochemical Properties of Refined Ƙ-Carrageenan from Kappaphycus alvarezii of Lemukutan Island. IOP Conference Series: Earth and Environmental Science, 1426(1), 012022. https://doi.org/10.1088/1755-1315/1426/1/012022

Shen, Y., Fan, N., Ma, S., Cheng, X., Yang, X., & Wang, G. (2025). Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm, 6(5), e70168. https://doi.org/10.1002/mco2.70168

Thylur Puttalingaiah, R., Dean, M. J., Zheng, L., Philbrook, P., Wyczechowska, D., Kayes, T., Del Valle, L., Danos, D., & Sanchez-Pino, M. D. (2024). Excess Potassium Promotes Autophagy to Maintain the Immunosuppressive Capacity of Myeloid-Derived Suppressor Cells Independent of Arginase 1. Cells, 13(20), 1736. https://doi.org/10.3390/cells13201736

Wagenaar, C. A., Van De Put, M., Bisschops, M., Walrabenstein, W., De Jonge, C. S., Herrema, H., & Van Schaardenburg, D. (2021). The Effect of Dietary Interventions on Chronic Inflammatory Diseases in Relation to the Microbiome: A Systematic Review. Nutrients, 13(9), 3208. https://doi.org/10.3390/nu13093208

Wang, N., Pei, Z., Wang, H., Zhao, J., Fang, Z., & Lu, W. (2025). Specific dietary fiber combination modulates gut indole-3-aldehyde and indole-3-lactic acid levels to improve atopic dermatitis in mice. Food Bioscience, 65, 106083. https://doi.org/10.1016/j.fbio.2025.106083

Xia, P., Zhao, M., Jin, H., Hou, T., Deng, Z., Zhang, M., Zhou, Q., Zhan, F., Li, B., & Li, J. (2023a). Konjac glucomannan-assisted curcumin alleviated dextran sulfate sodium-induced mice colitis via regulating immune response and maintaining intestinal barrier integrity. Food & Function, 14(19), 8747–8760. https://doi.org/10.1039/D3FO01068F

Xia, P., Zhao, M., Jin, H., Hou, T., Deng, Z., Zhang, M., Zhou, Q., Zhan, F., Li, B., & Li, J. (2023b). Konjac glucomannan-assisted curcumin alleviated dextran sulfate sodium-induced mice colitis via regulating immune response and maintaining intestinal barrier integrity. Food & Function, 14(19), 8747–8760. https://doi.org/10.1039/D3FO01068F

Downloads

Published

2025-07-11

How to Cite

1.
Mashudi S, Putri DR, Isroi’n L. Amorphophallus Konjac as a Natural Modulator of Inflammation and Immunity in Cancer Therapy. J Neonatal Surg [Internet]. 2025Jul.11 [cited 2025Sep.21];14(32S):4891-7. Available from: https://jneonatalsurg.com/index.php/jns/article/view/8215

Similar Articles

You may also start an advanced similarity search for this article.