Identification of Novel Cellulolytic Bacterial Strains from Termite Guts for Efficient Biomass Conversion

Authors

  • E Julie, Nishi Ann

Keywords:

Biomass, Termites, Cellulolytic bacteria, Odontotermes, lignocellulose

Abstract

Termites as eusocial insects, play a vital role in the terrestrial ecosystem by recycling lignocellulosic biomass comprising cellulose, hemicellulose, and lignin. Their ability to efficiently degrade plant material is facilitated by symbiotic microorganisms in their gut, particularly cellulolytic bacteria, which convert cellulose into metabolizable sugars such as glucose. This study focuses on isolating and identifying cellulose-degrading bacteria from the gut of termites belonging to the genus Odontotermes, which are major contributors to litter decomposition. The research involved isolating bacterial strains from termite gut samples and their characterization through standard morphological, physiological, and biochemical tests. The cellulolytic potential of the isolates was evaluated using carboxymethyl cellulose (CMC) agar plates, and the presence of cellulolytic enzyme activity was further confirmed using molecular techniques. The findings from this study enhance our understanding of termite gut microbiota and their role in lignocellulose degradation, with potential applications in biofuel production, waste management, and industrial enzyme development.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annual review of entomology, 39(1), 453-487.

Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168-180.

Hongoh, Y. (2010). Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience, biotechnology, and biochemistry, 74(6), 1145-1151.

Ohkuma, M. (2003). Termite symbiotic systems: efficient bio-recycling of lignocellulose. Applied microbiology and biotechnology, 61(1), 1-9.

Wenzel, M., Schönig, I., Berchtold, M., Kämpfer, P., & König, H. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of applied microbiology, 92(1), 32-40.

Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. Biology of termites: a modern synthesis, 439-475.

Mathew, G. M., Sindhu, R., Huang, C. C., Pandey, A., & Binod, P. (2022). Microbial diversity in termite gut ecosystem and their role in lignocellulosic degradation. In Microbial Diversity in Hotspots (pp. 155-175). Academic Press.

Pester, M., & Brune, A. (2007). Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. The ISME Journal, 1(6), 551-565.

Täyasu, I., Sugimoto, A., Wada, E., & Abe, T. (1994). Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften, 81, 229-231.

Tokuda, G., Watanabe, H., Matsumoto, T., & Noda, H. (1997). Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1, 4-gIucanase. Zoological Science, 14(1), 83-93.

Ni, J., & Tokuda, G. (2013). Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology advances, 31(6), 838-850.

Tsegaye, B., Balomajumder, C., & Roy, P. (2019). Isolation and characterization of novel lignolytic, cellulolytic, and hemicellulolytic bacteria from wood-feeding termite Cryptotermes brevis. International Microbiology, 22, 29-39.

Upadhyaya, S. K., Manandhar, A., Mainali, H., Pokhrel, A. R., Rijal, A., Pradhan, B., & Koirala, B. (2012). Isolation and characterization of cellulolytic bacteria from gut of termite. In Rentech Symposium Compendium (Vol. 1, No. 4, pp. 14-18).

Watanabe, H., & Tokuda, G. (2010). Cellulolytic systems in insects. Annual review of entomology, 55(1), 609-632.

Mikaelyan, A., Dietrich, C., Köhler, T., Poulsen, M., Sillam‐Dussès, D., & Brune, A. (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Molecular ecology, 24(20), 5284-5295.

Liu, N., Li, H., Chevrette, M. G., Zhang, L., Cao, L., Zhou, H., ... & Wang, Q. (2019). Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. The ISME Journal, 13(1), 104-117.

Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., & Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(7169), 560-565.

Hongoh, Y., Sharma, V. K., Prakash, T., Noda, S., Taylor, T. D., Kudo, T., ... & Ohkuma, M. (2008). Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proceedings of the National Academy of Sciences, 105(14), 5555-5560.

Shinzato, N., Muramatsu, M., Matsui, T., & Watanabe, Y. (2005). Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Bioscience, biotechnology, and biochemistry, 69(6), 1145-1155.

Bourguignon, T., Lo, N., Šobotník, J., Ho, S. Y., Iqbal, N., Coissac, E., ... & Evans, T. A. (2017). Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Molecular Biology and Evolution, 34(3), 589-597.

Hebert, P. D., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321.

Purty, R. S., & Chatterjee, S. (2016). DNA barcoding: an effective technique in molecular taxonomy. Austin J biotechnol bioeng, 3(1), 1059.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410.

Bergey, D. H. (1994). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.

Korsa, G., Beyene, A., & Ayele, A. (2023). Bacterial diversity from soil-feeding termite gut and their potential application. Annals of Microbiology, 73(1), 38.

Shinde, V. S., Agrawal, T., & Kotasthane, A. S. (2017). Molecular characterization of cellulolytic bacteria derived from termite gut and optimization of cellulase production. Int J Curr Microbiol Appl Sci, 6(10), 2474-2492.

Sreena, C., Resna, N., & Sebastian, D. (2015). Isolation and characterization of cellulase producing bacteria from the gut of termites (Odontotermes and Heterotermes species). British Biotechnology Journal, 9(1), 1-10.

Lane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics.

Chauhan, A., Jindal, T., Chauhan, A., & Jindal, T. (2020). Biochemical and molecular methods for bacterial identification. Microbiological methods for environment, food and pharmaceutical analysis, 425-468.

Devaraj, V., & Kesti, S. S. (2019). Isolation and molecular characterization of termite GUT microflora. Int. J. Sci. Res. in Biological Sciences Vol, 6, 3.

Makonde, H. M., Boga, H. I., Osiemo, Z., Mwirichia, R., Mackenzie, L. M., Göker, M., & Klenk, H. P. (2013). 16S-rRNA-based analysis of bacterial diversity in the gut of fungus-cultivating termites (Microtermes and Odontotermes species). Antonie Van Leeuwenhoek, 104, 869-883.

Peristiwati, Natamihardja, Y. S., & Herlini, H. (2018). Isolation and identification of cellulolytic bacteria from termites gut (Cryptotermes sp.). In Journal of Physics: Conference Series (Vol. 1013, p. 012173). IOP Publishing.

Sambrook, J., & Russell, D. W. (2001). Detection of DNA in agarose gels. Molecular Cloning, A Laboratory Manual, (3rd Ed.) Cold Spring Harbor Laboratory Press, New York, 5-14.

Yadav, P., Dixit, Y., Asnani, H., & Sharma, A. K. (2024). Exploration of ethanologenic bacteria from termite gut for bioethanol production. Biomass Conversion and Biorefinery, 1-14.

Cappuccino, J. G., & Sherman, N. (2005). Microbiology: a laboratory manual (p. 507). San Francisco: Pearson/Benjamin Cummings.

Kumar, R., & Velayutham, K. (2014). Isolation and characterization of cellulolytic bacteria from termite gut and their potential applications in biotechnology. Environmental Science and Pollution Research, 21(24), 13908-13916.

Garrido, M., Veiga, J., Garrigós, M., & Martínez-de la Puente, J. (2023). The interplay between vector microbial community and pathogen transmission on the invasive Asian tiger mosquito, Aedes albopictus: current knowledge and future directions. Frontiers in Microbiology, 14, 1208633.

Downloads

Published

2025-05-13

How to Cite

1.
Nishi Ann EJ. Identification of Novel Cellulolytic Bacterial Strains from Termite Guts for Efficient Biomass Conversion. J Neonatal Surg [Internet]. 2025May13 [cited 2025Sep.21];14(23S):491-7. Available from: https://jneonatalsurg.com/index.php/jns/article/view/5771