Comprehensive Bioinformatics Analysis of Tooth Agenesis: Identifying Key Genes, Regulatory Networks, and Potential Therapeutic Targets
Keywords:
tooth agenesis, tooth agenesis, WNT10A, WNT10A, BMP4, BMP4, gene expression, gene expression, bioinformatics analysis, bioinformatics analysisAbstract
Background: Tooth agenesis represents one of the most prevalent developmental anomalies in humans, affecting approximately 2-10% of the global population. Understanding the molecular mechanisms underlying this condition is crucial for developing targeted therapeutic interventions.
Objective: This study aimed to identify and characterize the key genes associated with tooth agenesis through comprehensive bioinformatics analysis, including gene ontology enrichment, pathway analysis, protein-protein interaction networks, and drug target identification.
Methods: We utilized the DisGeNET database to identify the top 10 genes associated with tooth agenesis based on Gene-Disease Association scores. Subsequently, we performed enrichment analysis using ENRICHR platform to examine Gene Ontology biological processes, cellular components, and molecular functions. MicroRNA targets were identified using TargetScan and miRBase databases. Protein-protein interaction networks were constructed to identify hub proteins, and potential drug targets were explored through IDG drug target analysis.
Results: WNT10A emerged as the most significant gene (scoreGDA: 0.8), followed by BMP4 (0.7) and LRP6 (0.65). Enrichment analysis revealed significant involvement in lipoprotein particle clearance, steroid metabolic processes, and cholesterol transport pathways. The protein-protein interaction network identified key hub proteins involved in cellular signaling cascades. Several potential therapeutic targets were identified, with Baricitinib showing the highest significance as a potential treatment option.
Conclusion: This comprehensive analysis provides valuable insights into the molecular mechanisms of tooth agenesis, highlighting potential therapeutic targets and pathways that could inform future treatment strategies for this developmental disorder.
Downloads
References
Polder BJ, Van't Hof MA, Van der Linden FP, Kuijpers-Jagtman AM. A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol. 2004;32(3):217-226.
Vastardis H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop. 2000;117(6):650-656.
Arte S, Nieminen P, Apajalahti S, Haavikko K, Thesleff I, Pirinen S. Characteristics of incisor-premolar hypodontia in families. J Dent Res. 2001;80(5):1445-1450.
Kapadia H, Mues G, D'Souza R. Genes affecting tooth morphogenesis. Orthod Craniofac Res. 2007;10(4):237-244.
Nunn JH, Carter NE, Gillgrass TJ, Hobson RS, Jepson NJ, Meechan JG, et al. The interdisciplinary management of hypodontia: background and role of paediatric dentistry. Br Dent J. 2003;194(5):245-251.
Thesleff I. The genetic basis of tooth development and dental defects. Am J Med Genet A. 2006;140(23):2530-2535.
Nieminen P. Genetic basis of tooth agenesis. J Exp Zool B Mol Dev Evol. 2009;312B(4):320-342.
Bei M. Molecular genetics of tooth development. Curr Opin Genet Dev. 2009;19(5):504-510.
van den Boogaard MJ, Créton M, Bronkhorst Y, van der Hout A, Hennekam E, Lindhout D, et al. Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Genet. 2012;49(5):327-331.
Zhang Z, Lan Y, Chai Y, Jiang R. Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into a single row. Science. 2009;323(5918):1232-1234.
Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74(5):1043-1050.
Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833-D839.
Klein OD, Oberoi S, Huysseune A, Hovorakova M, Peterka M, Peterkova R. Developmental disorders of the dentition: an update. Am J Med Genet C Semin Med Genet. 2013;163C(4):318-332.
Michon F. Tooth evolution and dental defects: from genetic regulation to regeneration. Int J Oral Sci. 2011;3(3):117-125.
Matalova E, Fleischmannova J, Sharpe PT, Tucker AS. Tooth agenesis: from molecular genetics to molecular dentistry. J Dent Res. 2008;87(7):617-623.
Yu M, Wong SW, Han D, Cai T. Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis. Oral Dis. 2019;25(3):646-651.
Stockton DW, Das P, Goldenberg M, D'Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet. 2000;24(1):18-19.
Das P, Hai M, Elcock C, Leal SM, Brown DT, Brook AH, et al. Novel missense mutations and a 288-bp exonic insertion in PAX9 in families with autosomal dominant hypodontia. Am J Med Genet A. 2003;118A(4):319-325.
Jumlongras D, Lin JY, Chapra A, Seidman CE, Seidman JG, Maas RL, et al. A nonsense mutation in MSX1 causes Witkop syndrome. Am J Hum Genet. 2001;69(1):67-74.
Mostowska A, Biedziak B, Trzeciak WH. A novel mutation in PAX9 causes familial form of molar oligodontia. Eur J Hum Genet. 2006;14(2):173-179.
Song S, Han D, Qu H, Gong Y, Wu H, Zhang X, et al. EGF signaling pathway upregulates Tbx1 to mediate palatal growth and development. J Dent Res. 2013;92(4):292-298.
Kamiya N, Ye L, Kobayashi T, Mochida Y, Yamauchi M, Kronenberg HM, et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development. 2008;135(22):3801-3811.
Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31-39.
Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104-116.
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12(8):517-533.
Traub LM. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol. 2009;10(9):583-596.
Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350-355.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297.
Barabási AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004;5(2):101-113.
Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41-42.
Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367(6):495-507.
O'Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161-170.
Cohen P. Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002;1(4):309-315.
Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56-68.
Mina M, Ochs HD. Clinical applications of immune system genomics. Hum Genet. 2014;133(11):1321-1331.
Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002;81(10):695-700.
Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science. 2004;306(5696):640-643.
Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662-1664.
Vidal M, Cusick ME, Barabási AL. Interactome networks and human disease. Cell. 2011;144(6):986-998.
Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682-690.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.