Development and Evaluation of Targeted Antihypertensive Therapy Using Losartan-Encapsulated Nanoparticles
Keywords:
Angiotensin receptor blocker, PLGA nanoparticles, targeted delivery, drug release kinetics, Losartan encapsulation, antihypertensive therapyAbstract
Hypertension is a widespread chronic condition and a major risk factor for cardiovascular diseases. Losartan, an angiotensin II receptor blocker, is commonly prescribed due to its efficacy and favorable safety profile. However, its therapeutic application is limited by poor oral bioavailability (approximately 33%), rapid hepatic metabolism, and frequent dosing requirements. This study aims to develop and evaluate a targeted nanoparticle-based drug delivery system for Losartan to enhance its pharmacokinetic and therapeutic profile. Losartan-loaded nanoparticles were formulated using the solvent evaporation method with polymers including PLGA, chitosan, and PEG derivatives. Formulation optimization was achieved through Box-Behnken Design, enabling the selection of the best-performing formulation based on particle size, zeta potential, drug loading (DL%), and encapsulation efficiency (EE%). The optimized PLGA-based formulation (F2) exhibited a mean particle size of 182.7 nm, zeta potential of –24.6 mV, DL% of 11.2, and EE% of 86.4. SEM analysis confirmed spherical shape with smooth surface morphology and no aggregation. In vitro drug release studies demonstrated a biphasic profile with an initial burst followed by sustained release over 48 hours. Kinetic modeling identified the Higuchi model (R² = 0.987) as the best fit, indicating diffusion-controlled release, while the Korsmeyer–Peppas model showed an anomalous transport mechanism (n = 0.61). Stability studies under ICH-recommended conditions confirmed long-term physical and chemical stability. These findings suggest that Losartan-loaded PLGA nanoparticles offer a promising approach for sustained, targeted antihypertensive therapy with improved bioavailability and reduced dosing frequency
Downloads
References
Aldawsari, M. F., Khafagy, E. S., Moglad, E. H., & Selim Abu Lila, A. (2023). Formulation optimization, in vitro and in vivo evaluation of niosomal nanocarriers for enhanced topical delivery of cetirizine. Saudi Pharmaceutical Journal. https://doi.org/10.1016/j.jsps.2023.101734
Carissimi, G., Montalbán, M. G., Víllora, G., & Barth, A. (2020). Direct quantification of drug loading content in polymeric nanoparticles by infrared spectroscopy. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12100912
de Andrade, D. F., Zuglianello, C., Pohlmann, A. R., Guterres, S. S., & Beck, R. C. R. (2015). Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System. AAPS PharmSciTech. https://doi.org/10.1208/s12249-015-0330-0
Elendu, C., Amaechi, D. C., Elendu, T. C., Fiemotonghan, B. E., Okoye, O. K., Agu-Ben, C. M., Onyekweli, S. O., Amapu, D. A., Ikpegbu, R., Asekhauno, M., Pius, E., Bayo-Shodipo, A. T., Okezie-Okoye, C. A., Bello, N., Oguine, C., Edochie, P., Dike, N., Amos, I., Asekhauno, J., … Adebayo, M. (2024). A comprehensive review of heart failure: Unraveling the etiology, decoding pathophysiological mechanisms, navigating diagnostic modalities, exploring pharmacological interventions, advocating lifestyle modifications, and charting the horizon of emerging therapies in the complex landscape of chronic cardiac dysfunction. In Medicine (United States). https://doi.org/10.1097/MD.0000000000036895
Elendu, C., Amaechi, D. C., Elendu, T. C., Omeludike, E. K., Alakwe-Ojimba, C. E., Obidigbo, B., Akpovona, O. L., Oros Sucari, Y. P., Saggi, S. K., Dang, K., & Chinedu, C. P. (2023). Comprehensive review of ST-segment elevation myocardial infarction: Understanding pathophysiology, diagnostic strategies, and current treatment approaches. In Medicine (United States). https://doi.org/10.1097/MD.0000000000035687
Elkomy, M. H., Ali, A. A., & Eid, H. M. (2022). Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. In Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2022.10.005
Elmowafy, M., Shalaby, K., Elkomy, M. H., Alsaidan, O. A., Gomaa, H. A. M., Abdelgawad, M. A., & Mostafa, E. M. (2023). Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. In Polymers. https://doi.org/10.3390/polym15051123
Ertas, Y. N., Dorcheh, K. A., Akbari, A., & Jabbari, E. (2021). Nanoparticles for targeted drug delivery to cancer stem cells: A review of recent advances. In Nanomaterials. https://doi.org/10.3390/nano11071755
Gessner, I., & Neundorf, I. (2020). Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21072536
Groenink, M., Den Hartog, A. W., Franken, R., Radonic, T., De Waard, V., Timmermans, J., Scholte, A. J., Van Den Berg, M. P., Spijkerboer, A. M., Marquering, H. A., Zwinderman, A. H., & Mulder, B. J. M. (2013). Losartan reduces aortic dilatation rate in adults with Marfan syndrome: A randomized controlled trial. European Heart Journal. https://doi.org/10.1093/eurheartj/eht334
Gurunathan, S., & Kim, J. H. (2023). Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications. In Microbial Pathogenesis. https://doi.org/10.1016/j.micpath.2023.106308
Handa, M., Beg, S., Shukla, R., Barkat, M. A., Choudhry, H., & Singh, K. K. (2021). Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting. In Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2021.10.025
Huang, Y., Cao, L., Parakhonskiy, B. V., & Skirtach, A. G. (2022). Hard, Soft, and Hard-and-Soft Drug Delivery Carriers Based on CaCO3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. In Pharmaceutics. https://doi.org/10.3390/pharmaceutics14050909
Jain, V. P., Chaudhary, S., Sharma, D., Dabas, N., Lalji, R. S. K., Singh, B. K., & Jaiswar, G. (2021). Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: A review. In European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2020.110124
Jamous, Y. F., Altwaijry, N. A., Saleem, M. T. S., Alrayes, A. F., Albishi, S. M., & Almeshari, M. A. (2023). Formulation and Characterization of Solid Lipid Nanoparticles Loaded with Troxerutin. Processes. https://doi.org/10.3390/pr11103039
Jazayeri, M. H., Amani, H., Pourfatollah, A. A., Pazoki-Toroudi, H., & Sedighimoghaddam, B. (2016). Various methods of gold nanoparticles (GNPs) conjugation to antibodies. In Sensing and Bio-Sensing Research. https://doi.org/10.1016/j.sbsr.2016.04.002
Khan, K. A., Ahmad, A., Marini, C., Nicotra, M., Di Cerbo, A., Fazal-Ur-Rehman, Ullah, N., & Khan, G. M. (2024). Formulation and Preparation of Losartan-Potassium-Loaded Controlled-Release Matrices Using Ethocel Grade 10 to Establish a Correlation between In Vitro and In Vivo Results. Pharmaceutics. https://doi.org/10.3390/pharmaceutics16020186
Kommana, N., Bharti, K., Surekha, D. B., Thokala, S., & Mishra, B. (2020). Development, optimization and evaluation of losartan potassium loaded Self Emulsifying Drug Delivery System. Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.jddst.2020.102026
Koo, J., Lim, C., & Oh, K. T. (2024). Recent Advances in Intranasal Administration for Brain-Targeting Delivery: A Comprehensive Review of Lipid-Based Nanoparticles and Stimuli-Responsive Gel Formulations. In International Journal of Nanomedicine. https://doi.org/10.2147/IJN.S439181
Lamptey, R. N. L., Sun, C., & Singh, J. (2023). Brain-targeted delivery of losartan through functionalized liposomal nanoparticles for management of neurogenic hypertension. International Journal of Pharmaceutics. https://doi.org/10.1016/j.ijpharm.2023.122841
Mikušová, V., & Mikuš, P. (2021). Advances in chitosan-based nanoparticles for drug delivery. In International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22179652
Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., Chen, J., & He, J. (2016). Global disparities of hypertension prevalence and control. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.115.018912
Mills, K. T., Stefanescu, A., & He, J. (2020). The global epidemiology of hypertension. In Nature Reviews Nephrology. https://doi.org/10.1038/s41581-019-0244-2
Mocumbi, A. O., Thienemann, F., & Sliwa, K. (2015). A global perspective on the epidemiology of pulmonary hypertension. In Canadian Journal of Cardiology. https://doi.org/10.1016/j.cjca.2015.01.030
Moradifar, N., Kiani, A. A., Veiskaramian, A., & Karami, K. (2021). Role of Organic and Inorganic Nanoparticles in the Drug Delivery System for Hypertension Treatment: A Systematic Review. Current Cardiology Reviews. https://doi.org/10.2174/1573403x17666210611115823
Patil, P., Khairnar, G., & Naik, J. (2015). Preparation and statistical optimization of Losartan Potassium loaded nanoparticles using Box Behnken factorial design: Microreactor precipitation. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2015.07.021
Puskarich, M. A., Cummins, N. W., Ingraham, N. E., Wacker, D. A., Reilkoff, R. A., Driver, B. E., Biros, M. H., Bellolio, F., Chipman, J. G., Nelson, A. C., Beckman, K., Langlois, R., Bold, T., Aliota, M. T., Schacker, T. W., Voelker, H. T., Murray, T. A., Koopmeiners, J. S., & Tignanelli, C. J. (2021). A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine. https://doi.org/10.1016/j.eclinm.2021.100957
Ripley, E., & Hirsch, A. (2010). Fifteen years of losartan: What have we learned about losartan that can benefit chronic kidney disease patients? In International Journal of Nephrology and Renovascular Disease. https://doi.org/10.2147/ijnrd.s7038
Shah, S., Patel, A. A., Prajapati, B. G., Alexander, A., Pandya, V., Trivedi, N., Pandey, P., Patel, S. G., & Patel, R. J. (2023). Multifaceted nanolipidic carriers: a modish stratagem accentuating nose-to-brain drug delivery. In Journal of Nanoparticle Research. https://doi.org/10.1007/s11051-023-05804-4
Singh, M., Kaur, R., Rajput, R., Agarwal, S., Kumar, S., Sharma, M., & Sharma, A. (2019). Analysis of Process and Formulation Variables on Chitosan based Losartan Potassium Nanoparticles: Preparation, Validation and in vitro Release Kinetics. Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering). https://doi.org/10.2174/2405520412666190502161137
Teixido-Tura, G., Forteza, A., Rodríguez-Palomares, J., González Mirelis, J., Gutiérrez, L., Sánchez, V., Ibáñez, B., García-Dorado, D., & Evangelista, A. (2018). Losartan Versus Atenolol for Prevention of Aortic Dilation in Patients With Marfan Syndrome. Journal of the American College of Cardiology. https://doi.org/10.1016/j.jacc.2018.07.052
Tiwari, P. M., Vig, K., Dennis, V. A., & Singh, S. R. (2011). Functionalized gold nanoparticles and their biomedical applications. In Nanomaterials. https://doi.org/10.3390/nano1010031
Yu, M., Zhang, C., Tang, Z., Tang, X., & Xu, H. (2019). Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity. Cancer Letters. https://doi.org/10.1016/j.canlet.2018.11.011
Zhao, C., Rehman, F. U., Shaikh, S., Qazi, R. e. M., Sajid, Z., Mian, A. A., & He, N. (2023). Metallic nanoscale-knife application in cancer theranostics. In Smart Materials in Medicine. https://doi.org/10.1016/j.smaim.2022.11.006
Zhou, B., Perel, P., Mensah, G. A., & Ezzati, M. (2021). Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. In Nature Reviews Cardiology. https://doi.org/10.1038/s41569-021-00559-8
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.