Phytochemical Screening and Antidiabetic Activity of Ethanolic Extract of Ficus racemosa bark in Streptozotocin-Induced Diabetic Rats

Authors

  • Anamika kulshrestha
  • Veerendra C. Yeligar
  • Asokan B.R
  • Pruthviraj C. Meshram
  • Pramod Ramrao
  • Monisha A
  • Chand Kaur
  • Santa Mandal

Keywords:

Ficus racemosa, phytochemical screening, antidiabetic activity, streptozotocin, β-cell regeneration, plant-based medicine

Abstract

Diabetes mellitus is a chronic metabolic disorder marked by persistent high blood glucose due to impaired insulin secretion, action, or both. It is a major global health challenge, with prevalence expected to rise from 537 million in 2021 to over 783 million by 2045. Type 2 diabetes mellitus constitutes over 90% of cases and is strongly associated with lifestyle and genetic factors. It leads to serious complications such as retinopathy, nephropathy, neuropathy, and cardiovascular diseases, which impose significant burdens on healthcare systems and reduce patients’ quality of life. Despite various pharmacological treatments, managing diabetes long-term is difficult due to side effects, cost, and the progressive need for combination therapies or insulin. This has sparked interest in alternative therapies, especially plant-based treatments that may offer fewer side effects and additional benefits. Ficus racemosa L., or cluster fig, is traditionally used to treat diabetes and other ailments. Its bark contains bioactive compounds like flavonoids, tannins, saponins, alkaloids, triterpenoids, and glycosides, which have antioxidant, anti-inflammatory, and hypoglycemic properties. However, scientific evidence supporting the antidiabetic effects of its ethanolic bark extract is limited. This study aims to evaluate the phytochemical profile and antidiabetic potential of Ficus racemosa bark ethanolic extract in streptozotocin-induced diabetic rats. Parameters such as fasting blood glucose, serum insulin, lipid profile, liver and kidney function markers, and pancreatic histology will be assessed to examine β-cell protection or regeneration. The results are expected to validate traditional claims and support the use of Ficus racemosa in diabetes management, especially in resource-poor settings.

Downloads

Download data is not yet available.

References

S., & Mishra, A. N. (2019). Evaluation of alloxan on induction of diabetes in albino rats. International Journal of Basic & Clinical Pharmacology. https://doi.org/10.18203/2319-2003.ijbcp20195290

Abeeleh, M. A., Ismail, Z. B., Alzaben, K. R., Abu-Halaweh, S. A., Al-Essa, M. K., Abuabeeleh, J., & Alsmady, M. M. (2009). Induction of diabetes mellitus in rats using intraperitoneal streptozotocin: A comparison between 2 strains of rats. European Journal of Scientific Research.

Akbarzadeh, A., Norouzian, D., Mehrabi, M. R., Jamshidi, S., Farhangi, A., Allah Verdi, A., Mofidian, S. M. A., & Lame Rad, B. (2007). Induction of diabetes by Streptozotocin in rats. Indian Journal of Clinical Biochemistry. https://doi.org/10.1007/BF02913315

Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. E., Khan, S. A., & Mohamed, I. N. (2022). Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. In Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2022.800714

Ali, M. A., & Mustafa, N. G. (2023). Biochemical Profiles of Different Approaches Applied to Induction of Diabetes in Rats. Egyptian Journal of Veterinary Science(Egypt). https://doi.org/10.21608/EJVS.2023.194510.1445

Ali, S., Ali, S. A., Kondrapu, P., Tripathi, N., Kumar, P. B., Prasad, P. D., & Tonape, M. M. (2023). A Brief Review Of Pathophysiology And Management Of Different Types Of Arthritis. European Chemical Bulletin, 12(12), 199–230. https://doi.org/10.48047/ecb/2023.12.si12.016

Ali, S., Ekbbal, R., Salar, S., Yasheshwar, N., Ali, S. A., Jaiswal, A. K., Singh, M., Yadav, D. K., Kumar, S., & Gaurav, N. (2023). Quality Standards and Pharmacological Interventions of Natural Oils: Current Scenario and Future Perspectives. In ACS Omega. https://doi.org/10.1021/acsomega.3c05241

Antar, S. A., Ashour, N. A., Sharaky, M., Khattab, M., Ashour, N. A., Zaid, R. T., Roh, E. J., Elkamhawy, A., & Al-Karmalawy, A. A. (2023). Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. In Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2023.115734

Bhargava, S., & Shah, M. B. (2021). Evaluation of efficacy of Bombax ceiba extract and its major constituent, mangiferin in streptozotocin (STZ)-induced diabetic rats. Journal of Complementary and Integrative Medicine. https://doi.org/10.1515/jcim-2020-0027

Biswas, T. K., & Mukherjee, B. (2003). Plant Medicines of Indian Origin for Wound Healing Activity: A Review. The International Journal of Lower Extremity Wounds. https://doi.org/10.1177/1534734603002001006

Deep, P., Singh, K. A., Ansari, M. T., & Raghav, P. (2013). Pharmacological potentials of Ficus racemosa - a review. In International Journal of Pharmaceutical Sciences Review and Research.

Deepa, P., Sowndhararajan, K., Kim, S., & Park, S. J. (2018). A role of Ficus species in the management of diabetes mellitus: A review. In Journal of Ethnopharmacology. https://doi.org/10.1016/j.jep.2017.12.045

Ekbbal, R., Jaiswal, A. K., Aggarwal, M., Singh, M., Ali, S., Ali, S. A., & Gautam, G. (2024). Indian Medicinal Plants for the Management of Endometriosis: A Comprehensive Review on their phytopharmacology. In Natural Resources for Human Health. https://doi.org/10.53365/nrfhh/174668

Gilijamse, P. W., Hartstra, A. V., Levin, E., Wortelboer, K., Serlie, M. J., Ackermans, M. T., Herrema, H., Nederveen, A. J., Imangaliyev, S., Aalvink, S., Sommer, M., Levels, H., Stroes, E. S. G., Groen, A. K., Kemper, M., de Vos, W. M., Nieuwdorp, M., & Prodan, A. (2020). Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. Npj Biofilms and Microbiomes. https://doi.org/10.1038/s41522-020-0127-0

Gong, L., Feng, D., Wang, T., Ren, Y., Liu, Y., & Wang, J. (2020). Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. In Food Science and Nutrition. https://doi.org/10.1002/fsn3.1987

Hasaninezhad, F., Tavaf, Z., Panahi, F., Nourisefat, M., Khalafi-Nezhad, A., & Yousefi, R. (2020). The assessment of antidiabetic properties of novel synthetic curcumin analogues: α-amylase and α-glucosidase as the target enzymes. Journal of Diabetes and Metabolic Disorders. https://doi.org/10.1007/s40200-020-00685-z

Hosseini, A., Shafee-Nick, R., & Ghorbani, A. (2015). Pancreatic beta cell protection/regeneration with phytotherapy. Brazilian Journal of Pharmaceutical Sciences. https://doi.org/10.1590/S1984-82502015000100001

Huang, X., Arjsri, P., Srisawad, K., Yodkeeree, S., & Dejkriengkraikul, P. (2024). Exploring the Anticancer Potential of Traditional Thai Medicinal Plants: A Focus on Dracaena loureiri and Its Effects on Non-Small-Cell Lung Cancer. Plants. https://doi.org/10.3390/plants13020290

Johnson, M. L., Distelmaier, K., Lanza, I. R., Irving, B. A., Robinson, M. M., Konopka, A. R., Shulman, G. I., & Nair, K. S. (2016). Mechanism by which caloric restriction improves insulin sensitivity in sedentary obese adults. Diabetes. https://doi.org/10.2337/db15-0675

Kalailingam, P., Kannaian, B., Tamilmani, E., & Kaliaperumal, R. (2014). Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine. https://doi.org/10.1016/j.phymed.2014.04.005

Lee, Y. S., & Jun, H. S. (2014). Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. In Metabolism: Clinical and Experimental. https://doi.org/10.1016/j.metabol.2013.09.010

Li, X., Bai, Y., Jin, Z., & Svensson, B. (2022). Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. In LWT. https://doi.org/10.1016/j.lwt.2021.112455

Maske, P. P., Kumbhar, P. S., Wali, A. G., Disouza, J. I., & Sharma, M. (2023). Antioxidant, Antidiabetic and Lipid Profiling of Spermadicyton Suaveolens in Streptozotocin (STZ) Induced Diabetic Rats. Brazilian Journal of Pharmaceutical Sciences. https://doi.org/10.1590/s2175-97902023e21820

Olesen, S. S., Hagn-Meincke, R., Drewes, A. M., Steinkohl, E., & Frøkjaer, J. B. (2021). Pancreatic atrophy and exocrine insufficiency associate with the presence of diabetes in chronic pancreatitis patients, but additional mediators are operative. Scandinavian Journal of Gastroenterology. https://doi.org/10.1080/00365521.2020.1867891

Osei, K., Schuster, D. P., Amoah, A. G. B., & Owusu, S. K. (2003). Pathogenesis of type 1 and type 2 diabetes mellitus in sub-saharan Africa: Implications for transitional populations. European Journal of Preventive Cardiology. https://doi.org/10.1177/174182670301000203

Pahari, N., Majumdar, S., Karati, D., & Mazumder, R. (2022). Exploring the pharmacognostic properties and pharmacological activities of phytocompounds present in Ficus racemosa linn.: A concise review. In Pharmacological Research - Modern Chinese Medicine. https://doi.org/10.1016/j.prmcm.2022.100137

Passino, R., Finneran, M. C., Hafner, H., Feng, Q., Huffman, L. D., Zhao, X. F., Johnson, C. N., Kawaguchi, R., Oses-Prieto, J. A., Burlingame, A. L., Geschwind, D. H., Benowitz, L. I., & Giger, R. J. (2024). Neutrophil-inflicted vasculature damage suppresses immune-mediated optic nerve regeneration. Cell Reports. https://doi.org/10.1016/j.celrep.2024.113931

Pradeep Kumar, C., & Sachin, J. (2013). Extraction and isolation of bioactive compounds from Ficus racemosa bark and Cissampelos pareira root by chromatographic techniques. International Journal of Pharmaceutical Sciences Review and Research.

Rahman, M. M., Dhar, P. S., Sumaia, Anika, F., Ahmed, L., Islam, M. R., Sultana, N. A., Cavalu, S., Pop, O., & Rauf, A. (2022). Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. In Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2022.113217

Ryan, B. J., Schleh, M. W., Ahn, C., Ludzki, A. C., Gillen, J. B., Varshney, P., Van Pelt, D. W., Pitchford, L. M., Chenevert, T. L., Gioscia-Ryan, R. A., Howton, S. M., Rode, T., Hummel, S. L., Burant, C. F., Little, J. P., & Horowitz, J. F. (2020). Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. Journal of Clinical Endocrinology and Metabolism. https://doi.org/10.1210/clinem/dgaa345

Saadane, A., Lessieur, E. M., Du, Y., Liu, H., & Kern, T. S. (2020). Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy. PLoS ONE. https://doi.org/10.1371/journal.pone.0238727

Schootman, M., Jeffe, D. B., Ratnapradipa, K. L., Eberth, J. M., & Davidson, N. O. (2020). Increased 30-Day Mortality Risk in Patients With Diabetes Mellitus After Colon Cancer Surgery: A Mediation Analysis. Diseases of the Colon and Rectum. https://doi.org/10.1097/DCR.0000000000001586

Shah, S. K., Garg, G., Jhade, D., & Pandey, H. (2016). Ficus racemosa Linn: Its potentials food security and rural medicinal management. In Journal of Pharmaceutical Sciences and Research.

Shamim, Ali, S., Ali, T., Sharma, H., Kishor, B. N., & Jha, S. K. (2025a). Recent Advances in Monodisperse Gold Nanoparticle Delivery, Synthesis, and Emerging Applications in Cancer Therapy. Plasmonics, 0123456789. https://doi.org/10.1007/s11468-024-02732-4

Shamim, Ali, S., Ali, T., Sharma, H., Kishor, B. N., & Jha, S. K. (2025b). Recent Advances in Monodisperse Gold Nanoparticle Delivery, Synthesis, and Emerging Applications in Cancer Therapy. Plasmonics, 20(1). https://doi.org/10.1007/s11468-024-02732-4

Singh, S., Bansal, A., Singh, V., Chopra, T., & Poddar, J. (2022). Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus. In Journal of Diabetes and Metabolic Disorders. https://doi.org/10.1007/s40200-021-00943-8

Tran, N., Pham, B., & Le, L. (2020). Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. In Biology. https://doi.org/10.3390/biology9090252

Umapathy, D., Dornadula, S., Rajagopalan, A., Murthy, N., Mariappanadar, V., Kesavan, R., & Kunka Mohanram, R. (2018). Potential of circulatory procalcitonin as a biomarker reflecting inflammation among South Indian diabetic foot ulcers. Journal of Vascular Surgery. https://doi.org/10.1016/j.jvs.2017.02.060

Veerapur, V. P., Prabhakar, K. R., Thippeswamy, B. S., Bansal, P., Srinivasan, K. K., & Unnikrishnan, M. K. (2012). Antidiabetic effect of Ficus racemosa Linn. stem bark in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats: A mechanistic study. Food Chemistry. https://doi.org/10.1016/j.foodchem.2011.10.052

Wang, J., & Wang, H. (2017). Oxidative stress in pancreatic beta cell regeneration. In Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2017/1930261

Zanzabil, K. Z., Hossain, M. S., & Hasan, M. K. (2023). Diabetes Mellitus Management: An Extensive Review of 37 Medicinal Plants. In Diabetology. https://doi.org/10.3390/diabetology4020019

Downloads

Published

2025-06-30

How to Cite

1.
kulshrestha A, C. Yeligar V, B.R A, C. Meshram P, Ramrao P, A M, Kaur C, Mandal S. Phytochemical Screening and Antidiabetic Activity of Ethanolic Extract of Ficus racemosa bark in Streptozotocin-Induced Diabetic Rats. J Neonatal Surg [Internet]. 2025Jun.30 [cited 2025Jul.20];14(32S):2887-98. Available from: https://jneonatalsurg.com/index.php/jns/article/view/7838

Most read articles by the same author(s)