Human Gut Microbiota Dysbiosis on Pesticides Exposure

Authors

  • Neha Sagar
  • Sisir Nandi

Keywords:

Gut microbiota, Dysbiosis, Pesticide exposure, GIT issues

Abstract

The gut microbiome refers to the vast community of microorganisms—mainly bacteria, but also viruses, fungi, archaea, and protozoa—that inhabit the digestive tract, primarily the intestines. These microbes form a complex ecosystem that interacts with our body, influencing digestion, metabolism, immune function, and even aspects of mental health. Dysbiosis means the loss of balance. The gut microbiota dysbiosis happens with their loss due to creating negative environment. It happens with many reasons. One of the major causes of gut microbiota dysbiosis is exposure on pesticides used in the fields. The pesticides in agricultural practices have raised concerns about its potential health effects on humans. This study explores the intricate relationship between pesticide exposure and its detrimental impact on the gastrointestinal microbiome.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017; 474 (11): 1823–1836.

Natividad JM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacological Research. 2013; 69(1): 42–51.

Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research. 2013; 54(9):2325-40.

Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016; 535(7610): 85-93.

Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016; 352(6285):539-44.

Facciotti F. Modulation of intestinal immune cell responses by eubiotic or dysbiotic microbiota in inflammatory bowel diseases. Pharmanutrition. 2022 ;21:100303.

Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV, Aadil RM. Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in microbiology. 2022 ;13:999001

AboNahas HH, Darwish AM, Abd EL-kareem HF, AboNahas YH, Mansour SA, Korra YH, Sayyed RZ, Abdel-Azeem AM, Saied EM. Trust your gut: the human gut microbiome in health and disease. Springer Nature. 2022: 53-96.

Simoes CD, Maganinho M, Sousa AS. FODMAPs, inflammatory bowel disease and gut microbiota: updated overview on the current evidence. European journal of nutrition. 2022; 1:1-2.

Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: The gut-brain axis. Clinics and practice. 2017 ;7(4):987.

Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV, Aadil RM. Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in microbiology. 2022 ;13:999001.

Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY. Population-level analysis of gut microbiome variation. Science. 2016 ;352(6285):560-4.

Heiss CN, Olofsson LE. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. Journal of neuroendocrinology. 2019; 31(5):e12684.

Singhal S, Bhadana R, Jain BP, Gautam A, Pandey S, Rani V. Role of gut microbiota in tumorigenesis and antitumoral therapies: an updated review. Biotechnology and Genetic Engineering Reviews. 2024; 40(4):3716-42.

Sonnenburg JL, Backhed F. Diet–microbiota interactions as moderators of human metabolism. Nature. 2016; 535(7610):56-64.

Jiang X, Zheng J, Zhang S, Wang B, Wu C, Guo X. Advances in the Involvement of Gut Microbiota in Pathophysiology of NAFLD. Frontiers in Medicine. 2020; 7:361.

Winter SE, Bäumler AJ. Gut dysbiosis: Ecological causes and causative effects on human disease. Proceedings of the National Academy of Sciences. 2023; 120(50): 2316579120.

Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Frontiers in Nutrition. 2024; 11:1330903.

Martinez JE, Kahana DD, Ghuman S, Wilson HP, Wilson J, Kim SC, Lagishetty V, Jacobs JP, Sinha-Hikim AP, Friedman TC. Unhealthy lifestyle and gut dysbiosis: a better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Frontiers in endocrinology. 2021 ;12:667066.

Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal immunology. 2017; 10(1):18-26.

Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Frontiers in Nutrition. 2024; 11: 1330903.

O’Riordan KJ, Moloney GM, Keane L, Clarke G, Cryan JF. The gut microbiota-immune-brain axis: Therapeutic implications. Cell Reports Medicine. 2025 ; 6(3): 101982.

Ponziani FR, Zocco MA, D’Aversa F, Pompili M, Gasbarrini A. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World journal of gastroenterology. 2017; 23(25): 4491.

Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition. 1995 ;125(6): 1401-12.

Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic advances in gastroenterology. 2013 ; 6(1): 39-51.

Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Molecular metabolism. 2016; 5(9):771-81.

Fung TC. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiology of disease. 2020 ; 136:104714.

Matsuzaki R, Gunnigle E, Geissen V, Clarke G, Nagpal J, Cryan JF. Pesticide exposure and the microbiota-gut-brain axis. The ISME Journal. 2023 ;17(8):1153-66.

Abou Diwan M, Lahimer M, Bach V, Gosselet F, Khorsi-Cauet H, Candela P. Impact of pesticide residues on the gut-microbiota–blood–brain barrier Axis: a narrative review. International Journal of Molecular Sciences. 2023 ;24(7):6147.

Sharma T, Sirpu Natesh N, Pothuraju R, Batra SK, Rachagani S. Gut microbiota: a non-target victim of pesticide-induced toxicity. Gut Microbes. 2023;15(1):2187578.

Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. International journal of environmental research and public health. 2011 ;8(5):1402-19.

Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. Agriculture development, pesticide application and its impact on the environment. International journal of environmental research and public health. 2021 ;18(3):1112.

Connell DW, Connell DW, Vowles PD, Warne MS, Hawker DW. Basic concepts of environmental chemistry. Boca Raton: CRC Press; 2005

Imazaki I, Iizumi H, Ishikawa K, Sasahara M, Yasuda N, Koizumi S. Effects of thiophanate-methyl and azoxystrobin on the composition of Cercospora kikuchii populations with thiophanate-methyl-resistant strains. Journal of General Plant Pathology. 2006; 72: 292-300.

Sharma T, Sirpu Natesh N, Pothuraju R, Batra SK, Rachagani S. Gut microbiota: a non-target victim of pesticide-induced toxicity. Gut Microbes. 2023 ;15(1):2187578.

Motta EV, Raymann K, Moran NA. Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences. 2018 ;115(41):10305-10.

Zhang J, Sun C, Jin X, Zhang Q. Gut dysbiosis and immune imbalance in pesticides exposure. Environ Toxicol Pharmacol. 2020;79:103443.

Ramakrishna C, Mande SS. Environment shapes the microbiome in the gut. Microb Ecol Health Dis. 2019;30(1):1555077

Zhang J, Sun C, Jin X, Zhang Q. Gut dysbiosis and immune imbalance in pesticides exposure. Environ Toxicol Pharmacol. 2020;79:103443.

Mesnage R, Antoniou MN. Facts and fallacies in the debate on glyphosate toxicity. Frontiers in public health. 2017 ;5:298193.

Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein & cell. 2010 ;1(8):718-25.

Popli S, Badgujar PC, Agarwal T, Bhushan B, Mishra V. Persistent organic pollutants in foods, their interplay with gut microbiota and resultant toxicity. Science of The Total Environment. 2022 ;832:155084.

Rieder R, Wisniewski PJ, Alderman BL, Campbell SC. Microbes and mental health: A review. Brain, behavior, and immunity. 2017 ;66:9-17.

Velmurugan G, Ramprasath T, Gilles M, Swaminathan K, Ramasamy S. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol Metab. 2017;28(8):612–625.

Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyás B. The gut microbiota influences blood-brain barrier permeability in mice. Science translational medicine. 2014 ;6(263): 263ra158-.

Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB, Tyakht AV, Kovarsky BA, Alekseev DG, Kostryukova ES, Mironova YS. Analysis of gut microbiota in patients with Parkinson’s disease. Bulletin of experimental biology and medicine. 2017 ;162:734-7.

Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in endocrinology. 2020 ;11:508738.

Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. Journal of Alzheimer’s Disease. 2017 ;58(1):1-5.

Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nature neuroscience. 2017 ;20(2):145-55.

Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan metabolism: a link between the gut microbiota and brain. Advances in nutrition. 2020 ;11(3):709-23.

Cryan JF, O'Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE. The microbiota-gut-brain axis. Physiological reviews. 2019 ;99(4):1877-2013.

Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, Asemi Z. Probiotic and prebiotic supplementation for the management of multiple sclerosis: A systematic review. Current Pharmaceutical Design,(2019); 25(4): 437–445.

Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews neuroscience. 2012 ;13(10):701-12.

Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693, 128–133.

Fang B, Li JW, Zhang M, Ren FZ, Pang GF. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food and Chemical Toxicology. 2018 ;111:144-52.

Prouty C, Mohebbi S, Zhang Q. Extreme weather events and wastewater infrastructure: A system dynamics model of a multi-level, socio-technical transition. Science of the Total Environment. 2020 ;714:136685.

Li C, Zhang W, Jiang Y, Gong X. Effects of chlorpyrifos on gut microbiota and metabolite in mice. Sci Total Environ. 2020;714:136685.

Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Molecular psychiatry. 2016 ;21(6):738-48.

Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nature neuroscience. 2017 ;20(2):145-55..

Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyás B. The gut microbiota influences blood-brain barrier permeability in mice. Science translational medicine. 2014 ;6(263):263ra158-.

Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, Tiwari RR, Kumar M, Nagpal R. Impact of environmental pollutants on gut microbiome and mental health via the gut–brain axis. Microorganisms. 2022 ;10(7):1457.

Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Frontiers in neuroscience. 2018;12:336468.

Rueda-Ruzafa L, Cruz F, Roman P, Cardona D. Gut microbiota and neurological effects of glyphosate. Neurotoxicology. 2019 ;75:1-8.

Zheng R, Romero-del Rey R, Ruiz-Moreno F, Garcia-Gonzalez J, Requena-Mullor M, Navarro-Mena AÁ, López-Villén A, Alarcon-Rodriguez R. Depressive symptoms and suicide attempts among farmers exposed to pesticides. Environmental toxicology and pharmacology. 2024 ;108:104461.

Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N, Khoshnood S. Obesity and gut–microbiota–brain axis: A narrative review. Journal of clinical laboratory analysis. 2022 May;36(5):e24420.

Yang Y, Zhou S, Xing Y, Yang G, You M. Impact of pesticides exposure during neurodevelopmental period on autism spectrum disorders–A focus on gut microbiota. Ecotoxicology and environmental safety. 2023 ;260:115079..

Bellot M, Carrillo MP, Bedrossiantz J, Zheng J, Mandal R, Wishart DS, Gómez-Canela C, Vila-Costa M, Prats E, Piña B, Raldúa D. From dysbiosis to neuropathologies: Toxic effects of glyphosate in zebrafish. Ecotoxicology and environmental safety. 2024 ;270:115888.

Cryan JF, O'Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE. The microbiota-gut-brain axis. Physiological reviews. 2019

Mesnage R, Renney G, Séralini GE, Ward M, Antoniou MN. Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide. Scientific reports. 2017 ;7(1):39328.

Tsiaoussis J, Antoniou MN, Koliarakis I, Mesnage R, Vardavas CI, Izotov BN, Psaroulaki A, Tsatsakis A. Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicology letters. 2019 ;312:72-97.

Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. Environmental Science and Pollution Research. 2020 ;27:24799-814.

Tang Q, Jin G, Wang G, Liu T, Liu X. Pesticide exposure and risk of depression: a meta-analysis of observational studies. Int J Environ Res Public Health. 2020;17(16):5794

Mesnage R, Antoniou MN. Computational modelling provides insight into the effects of glyphosate on the shikimate pathway in the human gut microbiome. Current research in toxicology. 2020 ;1:25-33.

Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan J. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular psychiatry. 2013 ;18(6):666-73.

Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012 ;336(6086):1262-7.

Downloads

Published

2025-06-30

How to Cite

1.
Sagar N, Nandi S. Human Gut Microbiota Dysbiosis on Pesticides Exposure. J Neonatal Surg [Internet]. 2025Jun.30 [cited 2025Jul.15];14(32S):2780-7. Available from: https://jneonatalsurg.com/index.php/jns/article/view/7826