Hippocampal Volume Analysis in Alzheimer's Disease
Keywords:
Alzheimer’s Disease, Hippocampus Volumetry, Fully Automated, Mild Cognitive Impairment, Magnetic Resonance ImagingAbstract
Hippocampal volume change over time, as evaluated by MRI, offers excellent potential as a marker for Alzheimer's “disease. In this study, we consider, using publicly available Statistical Parametric Mapping (SPM) software, a fully automated and computationally efficient processing pipeline for atlas-based hippocampal volumetry in 75 amnestic subjects with mild cognitive impairment (MCI) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Subjects were split into two groups: MCI stable and MCI to probable Alzheimer's disease (AD) converters, based on follow-up diagnoses at 0, 6, and 12 months. From the baseline T1-weighted MRI, the hippocampal grey matter volume (HGMV) was measured and adjusted for age and total intracranial volume. The average processing time per subject on a typical PC was less than 4 minutes. To identify MCI to likely AD converters, the area under the receiver operator characteristic curves of the corrected hippocampal grey matter volume right (HGMVR) and hippocampal grey matter volume left (HGMVL) were determined. Using one-way ANOVA data on the MMSE score, HGMVR, and HGMVL, a ROC CURVE is computed to compare the control group versus MCI and the control group versus AD.
Downloads
Metrics
References
Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366: 2112–7.
Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol. 2019;167:231–55.
Delgado-Alvarado M, Gago B, Navalpotro-Gomez I, et al. Biomarkers for dementia and mild cognitive impairment in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2016;31:861–81.
Morley JE. An overview of cognitive impairment. Clin Geriatr Med. 2018;34:505–13.entia: a Delphi consensus study. Lancet 2005; 366: 2112–7.
Braak H, Braak E. Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 1998; 53: 127–40.
Thompson PM, Hayashi KM, Dutton RA, Chiang MC, Leow Alzheimer’s disease, Sowell ER, et al. Tracking Alzheimer’s disease. Ann N Y Acad Sci 2007; 1097: 183–214.
Rosario, M., Alotaibi, R., Espinal-Martinez, A. O., Ayoub, A., Baumann, A., Clark, U., ... & Schon, K. (2024). Personal Mastery Attenuates the Association between Greater Perceived Discrimination and Lower Amygdala and Anterior Hippocampal Volume in a Diverse Sample of Older Adults. bioRxiv, 2024-01.
Levin, F., Grothe, M. J., Dyrba, M., Franzmeier, N., Teipel, S. J., & Alzheimer’s Disease Neuroimaging Initiative. (2024). Longitudinal trajectories of cognitive reserve in hypometabolic subtypes of Alzheimer's disease. Neurobiology of Aging, 135, 26-38.
Sluimer J, Vrenken H, Blankenstein M, Fox N, Scheltens P, Barkhof F, van der Flier W. Whole-brain atrophy rate in Alzheimer disease Identifying fast progressors. Neurology. 2008;70(19 Part 2): 1836–41.
Amoroso N, Errico R, Bellotti R. PRISMA-CAD: a fully automated method for computer-aided diagnosis of dementia based on structural MRI data. In: Proc MICCAI workshop challenge on computer-aided diagnosis of dementia based on structural MRI data. 2014. pp. 16–23.
Beheshti I, Demirel H, Initiative ADN. Probability distribution function-based classification of structural MRI for detecting Alzheimer’s disease. Comput Biol Med. 2015;64:208–16.
Bron EE, Smits M, Van Der Flier WM, Vrenken H, Barkhof F, Scheltens P, Papma JM, Steketee RM, Orellana CM, Meijboom R. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage. 2015;111:562–79.
Allen GI, Amoroso N, Anghel C, Balagurusamy V, Bare CJ, Beaton D, Bellotti R, Bennett DA, Boehme KL, Boutros PC. Crowdsourced estimation of cognitive decline and resilience in Alzheimer’s disease. Alzheimer’s Dement. 2016;12(6):645–53.
Colliot O, Chételat G, Chupin M, Desgranges B, Magnin B, Benali H, Dubois B, Garnero L, Eustache F, Lehéricy S. Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the Hippocampus 1. Radiology. 2008;248(1):194–201.
Tangaro S, Amoroso N, Boccardi M, Bruno S, Chincarini A, Ferraro G, Frisoni G, Maglietta R, Redolf A, Rei L. Automated voxel-by-voxel tissue classification for hippocampal segmentation: methods and validation. Physica Medica. 2014;30(8):878–87.
Poulin SP, Dautof R, Morris JC, Barrett LF, Dickerson BC, Initiative ADN. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res Neuroimag. 2011;194(1):7–13.
Amoroso N, Errico R, Bruno S, Chincarini A, Garuccio E, Sensi F, Tangaro S, Tateo A, Bellotti R, Initiative ADN. Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool. Phys Med Biol. 2015;60(22):8851.
Michael W. Weiner, Dallas P. Veitch, Paul S. Aisen, Laurel A. Beckett, Nigel J. Cairns, Robert C. Green, Danielle Harvey, Clifford R. Jack Jr., William Jagust, John C. Morris, et al., The Alzheimer’s Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement, Alzheimer’s Dementia 13 (5) (2017) 561–571.
Chen, Z., Chen, K., Li, Y., Geng, D., Li, X., Liang, X., ... & Alzheimer's Disease Neuroimaging Initiative. (2024). Structural, static, and dynamic functional MRI predictors for converting mild cognitive impairment to Alzheimer's disease: Inter‐cohort validation of Shanghai Memory Study and ADNI. Human Brain Mapping.
Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 2008a; 27: 685–91.
Hsu YY, Schuff N, Du AT, Mark K, Zhu X, Hardin D, et al. Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. J Magn Reson Imaging 2002; 16: 305–10.
Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325-1335.
Youden WJ (1950) Index for rating diagnostic tests. Cancer 3, 32-35.
Kohavi R. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), Montreal, Quebec, Canada, Vol. 2, pp. 1137-1143.
Apostolova, L.G., Thompson, P.M., Green, A.E., Hwang, K.S., Zoumalan, C., Jack, C.R., Harvey, D.J., Petersen, R.C., Thal, L.J., Aisen, P.S., Toga, A.W., Cummings, J.L., DeCarli, C.S., 2010. 3D comparison of low, intermediate, and advanced hippocampal atrophy in MCI. Human Brain Mapping 31, 786–797. URL: http://doi.wiley.com/10.1002/hbm.20905, 666 doi:10.1002/hbm.20905.
Okonkwo, O.C., Xu, G., Dowling, N.M., Bendlin, B.B., LaRue, A., Hermann, B.P., Koscik, R., Jonaitis, E., Rowley, H.a., Carlsson, C.M., Asthana, S., Sager, M.a., Johnson, S.C., 2012. A family history of Alzheimer's disease predicts hippocampal atrophy in healthy middle-aged adults. Neurology 78, 1769–1776. URL: http://www.neurology.org/cgi/doi/10.1212/WNL. 0b013e3182583047, doi:10.1212/WNL.0b013e3182583047
Shi, F., Liu, B., Zhou, Y., Yu, C., Jiang, T., 2009. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus 19, 1055–64. URL: http://www.ncbi.nlm.nih.gov/pubmed/19309039.
Frank´o, E., Joly, Olivier, A.D.N.I., 2013. Evaluating Alzheimer’s disease progression using the rate of regional hippocampal atrophy. PloS one 8, 737 e71354. URL: http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=3741167&tool=pmcentrez&rendertype=abstract, doi:10.1371/journal.pone.0071354.
Amoroso, N., Rocca, M. L., Bellotti, R., Fanizzi, A., Monaco, A., Tangaro, S., & Alzheimer’s Disease Neuroimaging Initiative Michael Weiner. (2018). Alzheimer’s disease diagnosis based on the hippocampal unified multi-atlas network (HUMAN) algorithm. Biomedical engineering online, 17, 1-16.
Chincarini, A., Sensi, F., Rei, L., Gemme, G., Squarcia, S., Longo, R., ... & Alzheimer's Disease Neuroimaging Initiative. (2016). Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease. NeuroImage, 125, 834-847.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.