Computational Study of Drug kinetics in the Vitreous Humor
Keywords:
Intravitreal Drug Delivery, Mathematical Model,, Zero-Order Release, First-Order kinematics, MATLAB SimulationAbstract
A comprehensive study of drug delivery in vitreous body was analyzed and zero order reaction rate mechanism compared with first order mechanism. A simple Mathematical model was developed and numerical solution obtained by using numerical iterative techniques. The effect of various parameter elimination rate reaction, diffusion coefficient, vitreous humor volume on drug concentration was observed. Initially at a constant reaction rate the drug concentration increases linearly and after some time it decays exponentially. MATLAB and other simulation software have been instrumental in these studies, seeing to tremendous advancements in intravitreal drug kinetics modeling, many parameters are still untouched like mathematically model and simulate intravitreal drug kinetics, focusing on the comparative analysis of zero-order and first-order release mechanisms using MATLAB.
Downloads
References
G Jahanmir (2020), Mathematical Modelling of Hydrogel Depot for Ocular Drug Delivery.
A. Ferreira, M.B. Gonçalves, E. Gudiño, M. Maia, C.M (2020). Oishi,Mathematical model for degradation and drug release from an intravitreal biodegradable implant,Computers & Mathematics with Applications, Volume 80, Issue 10, 2212-2240.
Dosmar, E., Vuotto, G., Su, X., Roberts, E., Lannoy, A., Bailey, G. J., Mieler, W. F., & Kang-Mieler, J. J. (2021). Compartmental and COMSOL Multiphysics 3D Modeling of Drug Diffusion to the Vitreous Following the Administration of a Sustained-Release Drug Delivery System. Pharmaceutics, 13(11), 1862.
P. Causin, P, et al.(2016), Mathematical assessment of drug build-up in the posterior eye following transscleral delivery. J.Math.Industry 6, 9.
Kim, H. M., Ha, S., Hong, H. K., Hwang, Y., Kim, P., Yang, E., Chung, J. Y., Park, S., Park, Y. J., Park, K. H., Kim, H., & Woo, S. J. (2020). Intraocular Distribution and Kinetics of Intravitreally Injected Antibodies and Nanoparticles in Rabbit Eyes. Translational vision science & technology, 9(6).
Kim, H. M., Ha, S., Hong, H. K., Hwang, Y., Kim, P., Yang, E., Chung, J. Y., Park, S., Park, Y. J., Park, K. H., Kim, H., & Woo, S. J. (2020). Intraocular Distribution and Kinetics of Intravitreally Injected Antibodies and Nanoparticles in Rabbit Eyes. Translational vision science & technology, 9(6).
Hou, H., Nieto, A., Belghith, A., Nan, K., Li, Y., Freeman, W. R., Sailor, M. J., & Cheng, L. (2015). A sustained intravitreal drug delivery system with remote real time monitoring capability. Acta biomaterialia, 24, 309–321.
Khoobyar A, Penkova AN, Humayun MS, Sadhal SS. Mathematical Model of Macromolecular Drug Transport in a Partially Liquefied Vitreous Humor. J Heat Transfer. 2022 Mar 1;144(3) MB.
Gonçalves M.B.,etal. (2023) Oishi,Mathematical modeling for drug delivery and inflammation process: An application in macular edema,Applied Mathematical Modelling,Volume 121,2023,Pages 668-689.
Toffoletto, N., Saramago, B., Serro, A.P. et al.(2023) A Physiology-Based Mathematical Model to Understand Drug Delivery from Contact Lenses to the Back of the Eye. Pharm Res 40, 1939–1951.
Junnuthula, V., Sadeghi Boroujeni, A., Cao, S., Tavakoli, S., Ridolfo, R., Toropainen, E., Ruponen, M., van Hest, J. C. M., & Urtti, A. (2021). Intravitreal Polymeric Nanocarriers with Long Ocular Retention and Targeted Delivery to the Retina and Optic Nerve Head Region. Pharmaceutics, 13(4), 445.
Awwad, S., Ibeanu, N., Liu, T., Velentza-Almpani, A., Chouhan, N., Vlatakis, S., Khaw, P. T., Brocchini, S., & Bouremel, Y. (2023). Real-Time Monitoring Platform for Ocular Drug Delivery. Pharmaceutics, 15(5), 1444.
J., Pablo, L., Garcia-Martin, E., Herrero-Vanrell, R., & Bravo-Osuna, I. (2024). Multi-loaded PLGA microspheres as neuroretinal therapy in a chronic glaucoma animal model. Drug delivery and translational research, 10.1007/s13346-024-01702-x. Advance online publication.
Costello, M. A., Liu, J., Kuehster, L., Wang, Y., Qin, B., Xu, X., Li, Q., Smith, W. C., Lynd, N. A., & Zhang, F. (2023). Role of PLGA Variability in Controlled Drug Release from Dexamethasone Intravitreal Implants. Molecular pharmaceutics, 20(12), 6330–6344.
Kim, H., Robinson, M. R., Lizak, M. J., Tansey, G., Lutz, R. J., Yuan, P., Wang, N. S., & Csaky, K. G. (2004). Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Investigative ophthalmology & visual science, 45(8), 2722–2731.
Kim, H., Lizak, M. J., Tansey, G., Csaky, K. G., Robinson, M. R., Yuan, P., Wang, N. S., & Lutz, R. J. (2005). Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Annals of biomedical engineering, 33(2), 150–164.
Tan, L. E., Orilla, W., Hughes, P. M., Tsai, S., Burke, J. A., & Wilson, C. G. (2011). Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. Investigative ophthalmology & visual science, 52(2), 1111–1118.
A R Welborn (2010). Simulation of diffusion in three unique situations for the novel capsule drug ring, Scholarly Articles.
Hutton-Smith, L. A., Gaffney, E. A., Byrne, H. M., Maini, P. K., Schwab, D., & Mazer, N. A. (2016). A Mechanistic Model of the Intravitreal Pharmacokinetics of Large Molecules and the Pharmacodynamic Suppression of Ocular Vascular Endothelial Growth Factor Levels by Ranibizumab in Patients with Neovascular Age-Related Macular Degeneration. Molecular pharmaceutics, 13(9), 2941–2950.
Nomoto, Y., Shiraga, F., Kuno, N., Kimura, E., Fujii, S., Shinomiya, K., Nugent, A. K., Hirooka, K., & Baba, T. (2009).Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits.Investigative Ophthalmology & Visual Science, 50(10), 4807–4813. https://doi.org/10.1167/iovs.08-3148.
Urtti, A., del Amo EM, Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Eur J Pharm Sci. 2008 Sep;35(3):161–174. doi:10.1016/j.ejps.2008.07.002.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.