Formulation, Standardization, and in Vitro Pharmacological Assessment of a Polyherbal Blend for the Management of Type 2 Diabetes and Protection against Cisplatin-Induced Nephrotoxicity
Keywords:
Antidiabetic, Nephroprotective, Herbal formula, DPP-4 inhibition, Type 2 DiabetesAbstract
The present study focuses on the development and pharmacological evaluation of a novel herbal formulation (RG-PV-HF) for its antidiabetic and nephroprotective potential in in vitro models. The extract was prepared using the cold maceration method and subjected to phytochemical screening, confirming the presence of flavonoids, tannins, phenols, saponins, alkaloids, and glycosides. The total phenolic content was determined using the Folin-Ciocalteu method, yielding 317.87 mg GAE/g extract. The extract exhibited α-amylase and α-glucosidase inhibition in a concentration-dependent manner, with IC₅₀ values of 592.88 µg/mL and 321.77 µg/mL, respectively. Additionally, DPP-4 inhibition was observed, suggesting a role in incretin-based glucose regulation. The cytotoxicity assessment using the MTT assay on HEK-293 cells demonstrated high cell viability, confirming its biocompatibility. Furthermore, RG-PV-HF provided significant protection against cisplatin-induced nephrotoxicity, highlighting its potential antioxidant and nephroprotective effects. The findings suggest that RG-PV-HF could be a promising natural therapeutic candidate for managing Type 2 diabetes and nephrotoxicity, warranting further investigation into its mechanism of action and in vivo efficacy
Downloads
Metrics
References
Ahsan, R., Mishra, A., Badar, B., Owais, M., & Mishra, V. (2023). Therapeutic Application, Phytoactives and Pharmacology of Tinospora cordifolia: An Evocative Review. Chin J Integr Med, 29(6), 549-555. https://doi.org/10.1007/s11655-023-3733-2
Al-masri, I. M., Mohammad, M. K., & Tahaa, M. O. (2009). Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(5), 1061-1066. https://doi.org/10.1080/14756360802610761
Andriana, Y., Xuan, T. D., Quy, T. N., Minh, T. N., Van, T. M., & Viet, T. D. (2019). Antihyperuricemia, Antioxidant, and Antibacterial Activities of Tridax procumbens L. Foods, 8(1). https://doi.org/10.3390/foods8010021
Bansal, N., Dhaliwal, R., & Weinstock, R. S. (2015). Management of diabetes in the elderly. Med Clin North Am, 99(2), 351-377. https://doi.org/10.1016/j.mcna.2014.11.008
Berlin Grace, V. M., Viswanathan, S., David Wilson, D., Jagadish Kumar, S., Sahana, K., Maria Arbin, E. F., & Narayanan, J. (2020). Significant action of Tridax procumbens L. leaf extract on reducing the TNF-α and COX-2 gene expressions in induced inflammation site in Swiss albino mice. Inflammopharmacology, 28(4), 929-938. https://doi.org/10.1007/s10787-019-00634-0
Cattin, L. (2016). [Diabetes Mellitus: etiology, pathophysiology and clinical classification]. G Ital Nefrol, 33(S68). (Il diabete mellito: etiopatogenesi ed inquadramento clinico.)
Darenskaya, M. A., Kolesnikova, L. I., & Kolesnikov, S. I. (2021). Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med, 171(2), 179-189. https://doi.org/10.1007/s10517-021-05191-7
Harborne, J. B. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Springer. http://books.google.co.in/books?id=2yvqeRtE8CwC
Ikewuchi, C. J., & Ikewuchi, C. C. (2009). Alteration of plasma lipid profile and atherogenic indices of cholesterol loaded rats by Tridax procumbens Linn: Implications for the management of obesity and cardiovascular diseases. Biokemistri, 21(2), 95-99.
Ikewuchi, J., Ikewuchi, C., & Igboh, M. (2009). Chemical profile of Tridax procumbens Linn. Pak J Nutr, 8(5), 548-550.
Jacobs, A. M. (1993). Diabetes mellitus. Clin Podiatr Med Surg, 10(2), 231-248.
Kpemissi, M., Eklu-Gadegbeku, K., Veerapur, V. P., Negru, M., Taulescu, M., Chandramohan, V., Hiriyan, J., Banakar, S. M., Nv, T., Suhas, D. S., Puneeth, T. A., Vijayakumar, S., Metowogo, K., & Aklikokou, K. (2019). Nephroprotective activity of Combretum micranthum G. Don in cisplatin induced nephrotoxicity in rats: In-vitro, in-vivo and in-silico experiments. Biomedicine & Pharmacotherapy, 116, 108961. https://doi.org/https://doi.org/10.1016/j.biopha.2019.108961
Luan, F., Wu, Q., Yang, Y., Lv, H., Liu, D., Gan, Z., & Zeng, N. (2020). Traditional Uses, Chemical Constituents, Biological Properties, Clinical Settings, and Toxicities of Abelmoschus manihot L.: A Comprehensive Review. Front Pharmacol, 11, 1068. https://doi.org/10.3389/fphar.2020.01068
Melmer, A., & Laimer, M. (2016). Treatment Goals in Diabetes. Endocr Dev, 31, 1-27. https://doi.org/10.1159/000439364
Olayinka, A. A., & Anthony, I. O. (2009). Phyochemical screening and polyphenolic antioxidant activity of aqueous crude leaf extract of Helichrysum pedulanculatum. Int. J. Mol. Sci., 10(11), 46-58.
Pan, X. X., Tao, J. H., Jiang, S., Zhu, Y., Qian, D. W., & Duan, J. A. (2018). Characterization and immunomodulatory activity of polysaccharides from the stems and leaves of Abelmoschus manihot and a sulfated derivative. Int J Biol Macromol, 107(Pt A), 9-16. https://doi.org/10.1016/j.ijbiomac.2017.08.130
Papatheodorou, K., Banach, M., Edmonds, M., Papanas, N., & Papazoglou, D. (2015). Complications of Diabetes. J Diabetes Res, 2015, 189525. https://doi.org/10.1155/2015/189525
Pareek, H., Sharma, S., Khajja, B. S., Jain, K., & Jain, G. C. (2009). Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.). BMC Complement Altern Med, 9, 48. https://doi.org/10.1186/1472-6882-9-48
Petchi, R. R., Parasuraman, S., & Vijaya, C. (2013). Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats. J Basic Clin Pharm, 4(4), 88-92. https://doi.org/10.4103/0976-0105.121655
Richter, E., Geetha, T., Burnett, D., Broderick, T. L., & Babu, J. R. (2023). The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci, 24(5). https://doi.org/10.3390/ijms24054643
Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. (2011). Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr J Tradit Complement Altern Med, 8(1), 1-10. https://www.ncbi.nlm.nih.gov/pubmed/22238476
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218439/
Singh, M. P., Chauhan, A. K., & Kang, S. C. (2018). Morin hydrate ameliorates cisplatin-induced ER stress, inflammation and autophagy in HEK-293 cells and mice kidney via PARP-1 regulation. International Immunopharmacology, 56, 156-167. https://doi.org/https://doi.org/10.1016/j.intimp.2018.01.031
Sultana, B., Anwar, F., & Ashraf, M. J. M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. 14(6), 2167-2180.
Sun, Y., Tao, Q., Wu, X., Zhang, L., Liu, Q., & Wang, L. (2021). The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne), 12, 756581. https://doi.org/10.3389/fendo.2021.756581
The, L. (2017). Diabetes: a dynamic disease. Lancet, 389(10085), 2163. https://doi.org/10.1016/s0140-6736(17)31537-4
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.