Formulation, Standardization, and in Vitro Pharmacological Assessment of a Polyherbal Blend for the Management of Type 2 Diabetes and Protection against Cisplatin-Induced Nephrotoxicity

Authors

  • Priyanka Arvind Shelke
  • Supriya Chatla
  • Shankar Gavaroji
  • Rashmi Mohapatra
  • Ashutosh Pathak
  • Nilkamal Waghmare
  • Rohini Armo
  • Yeolekar Varad

Keywords:

Antidiabetic, Nephroprotective, Herbal formula, DPP-4 inhibition, Type 2 Diabetes

Abstract

The present study focuses on the development and pharmacological evaluation of a novel herbal formulation (RG-PV-HF) for its antidiabetic and nephroprotective potential in in vitro models. The extract was prepared using the cold maceration method and subjected to phytochemical screening, confirming the presence of flavonoids, tannins, phenols, saponins, alkaloids, and glycosides. The total phenolic content was determined using the Folin-Ciocalteu method, yielding 317.87 mg GAE/g extract. The extract exhibited α-amylase and α-glucosidase inhibition in a concentration-dependent manner, with IC₅₀ values of 592.88 µg/mL and 321.77 µg/mL, respectively. Additionally, DPP-4 inhibition was observed, suggesting a role in incretin-based glucose regulation. The cytotoxicity assessment using the MTT assay on HEK-293 cells demonstrated high cell viability, confirming its biocompatibility. Furthermore, RG-PV-HF provided significant protection against cisplatin-induced nephrotoxicity, highlighting its potential antioxidant and nephroprotective effects. The findings suggest that RG-PV-HF could be a promising natural therapeutic candidate for managing Type 2 diabetes and nephrotoxicity, warranting further investigation into its mechanism of action and in vivo efficacy

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahsan, R., Mishra, A., Badar, B., Owais, M., & Mishra, V. (2023). Therapeutic Application, Phytoactives and Pharmacology of Tinospora cordifolia: An Evocative Review. Chin J Integr Med, 29(6), 549-555. https://doi.org/10.1007/s11655-023-3733-2

Al-masri, I. M., Mohammad, M. K., & Tahaa, M. O. (2009). Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(5), 1061-1066. https://doi.org/10.1080/14756360802610761

Andriana, Y., Xuan, T. D., Quy, T. N., Minh, T. N., Van, T. M., & Viet, T. D. (2019). Antihyperuricemia, Antioxidant, and Antibacterial Activities of Tridax procumbens L. Foods, 8(1). https://doi.org/10.3390/foods8010021

Bansal, N., Dhaliwal, R., & Weinstock, R. S. (2015). Management of diabetes in the elderly. Med Clin North Am, 99(2), 351-377. https://doi.org/10.1016/j.mcna.2014.11.008

Berlin Grace, V. M., Viswanathan, S., David Wilson, D., Jagadish Kumar, S., Sahana, K., Maria Arbin, E. F., & Narayanan, J. (2020). Significant action of Tridax procumbens L. leaf extract on reducing the TNF-α and COX-2 gene expressions in induced inflammation site in Swiss albino mice. Inflammopharmacology, 28(4), 929-938. https://doi.org/10.1007/s10787-019-00634-0

Cattin, L. (2016). [Diabetes Mellitus: etiology, pathophysiology and clinical classification]. G Ital Nefrol, 33(S68). (Il diabete mellito: etiopatogenesi ed inquadramento clinico.)

Darenskaya, M. A., Kolesnikova, L. I., & Kolesnikov, S. I. (2021). Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med, 171(2), 179-189. https://doi.org/10.1007/s10517-021-05191-7

Harborne, J. B. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Springer. http://books.google.co.in/books?id=2yvqeRtE8CwC

Ikewuchi, C. J., & Ikewuchi, C. C. (2009). Alteration of plasma lipid profile and atherogenic indices of cholesterol loaded rats by Tridax procumbens Linn: Implications for the management of obesity and cardiovascular diseases. Biokemistri, 21(2), 95-99.

Ikewuchi, J., Ikewuchi, C., & Igboh, M. (2009). Chemical profile of Tridax procumbens Linn. Pak J Nutr, 8(5), 548-550.

Jacobs, A. M. (1993). Diabetes mellitus. Clin Podiatr Med Surg, 10(2), 231-248.

Kpemissi, M., Eklu-Gadegbeku, K., Veerapur, V. P., Negru, M., Taulescu, M., Chandramohan, V., Hiriyan, J., Banakar, S. M., Nv, T., Suhas, D. S., Puneeth, T. A., Vijayakumar, S., Metowogo, K., & Aklikokou, K. (2019). Nephroprotective activity of Combretum micranthum G. Don in cisplatin induced nephrotoxicity in rats: In-vitro, in-vivo and in-silico experiments. Biomedicine & Pharmacotherapy, 116, 108961. https://doi.org/https://doi.org/10.1016/j.biopha.2019.108961

Luan, F., Wu, Q., Yang, Y., Lv, H., Liu, D., Gan, Z., & Zeng, N. (2020). Traditional Uses, Chemical Constituents, Biological Properties, Clinical Settings, and Toxicities of Abelmoschus manihot L.: A Comprehensive Review. Front Pharmacol, 11, 1068. https://doi.org/10.3389/fphar.2020.01068

Melmer, A., & Laimer, M. (2016). Treatment Goals in Diabetes. Endocr Dev, 31, 1-27. https://doi.org/10.1159/000439364

Olayinka, A. A., & Anthony, I. O. (2009). Phyochemical screening and polyphenolic antioxidant activity of aqueous crude leaf extract of Helichrysum pedulanculatum. Int. J. Mol. Sci., 10(11), 46-58.

Pan, X. X., Tao, J. H., Jiang, S., Zhu, Y., Qian, D. W., & Duan, J. A. (2018). Characterization and immunomodulatory activity of polysaccharides from the stems and leaves of Abelmoschus manihot and a sulfated derivative. Int J Biol Macromol, 107(Pt A), 9-16. https://doi.org/10.1016/j.ijbiomac.2017.08.130

Papatheodorou, K., Banach, M., Edmonds, M., Papanas, N., & Papazoglou, D. (2015). Complications of Diabetes. J Diabetes Res, 2015, 189525. https://doi.org/10.1155/2015/189525

Pareek, H., Sharma, S., Khajja, B. S., Jain, K., & Jain, G. C. (2009). Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.). BMC Complement Altern Med, 9, 48. https://doi.org/10.1186/1472-6882-9-48

Petchi, R. R., Parasuraman, S., & Vijaya, C. (2013). Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats. J Basic Clin Pharm, 4(4), 88-92. https://doi.org/10.4103/0976-0105.121655

Richter, E., Geetha, T., Burnett, D., Broderick, T. L., & Babu, J. R. (2023). The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci, 24(5). https://doi.org/10.3390/ijms24054643

Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. (2011). Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr J Tradit Complement Altern Med, 8(1), 1-10. https://www.ncbi.nlm.nih.gov/pubmed/22238476

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218439/

Singh, M. P., Chauhan, A. K., & Kang, S. C. (2018). Morin hydrate ameliorates cisplatin-induced ER stress, inflammation and autophagy in HEK-293 cells and mice kidney via PARP-1 regulation. International Immunopharmacology, 56, 156-167. https://doi.org/https://doi.org/10.1016/j.intimp.2018.01.031

Sultana, B., Anwar, F., & Ashraf, M. J. M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. 14(6), 2167-2180.

Sun, Y., Tao, Q., Wu, X., Zhang, L., Liu, Q., & Wang, L. (2021). The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne), 12, 756581. https://doi.org/10.3389/fendo.2021.756581

The, L. (2017). Diabetes: a dynamic disease. Lancet, 389(10085), 2163. https://doi.org/10.1016/s0140-6736(17)31537-4

Downloads

Published

2025-05-12

How to Cite

1.
Shelke PA, Chatla S, Gavaroji S, Mohapatra R, Pathak A, Waghmare N, Armo R, Varad Y. Formulation, Standardization, and in Vitro Pharmacological Assessment of a Polyherbal Blend for the Management of Type 2 Diabetes and Protection against Cisplatin-Induced Nephrotoxicity. J Neonatal Surg [Internet]. 2025May12 [cited 2025Oct.13];14(23S):23-34. Available from: https://jneonatalsurg.com/index.php/jns/article/view/5684