Machine Learning Algorithms in Statistical Modelling Bridging Theory and Application.
Keywords:
Cross-Disciplinary Applications, Interpretability, Algorithmic Bias, Dimensionality Reduction, Hybrid Models, Predictive Analytics, Classification, Regression, Statistical Modelling, Machine LearningAbstract
It involves the completely novel ways of integrating ML algorithms with traditional statistical modelling that has changed the way we analyze data, do predictive analytics or make decisions in the fields of the data. In this paper, we study some ML and statistical model connections to understand ways in which some modern ML algorithms help 'enrich' conventional models; we demonstrate how new algorithms improve performance, scale, flexibility and robustness of the traditional models. It shows that the hybrid models are of great improvement in predictive accuracy, robustness, and interpretability
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.