Development and Characterization of PCL/Nano-Hydroxyapatite/PEG Electrospun Membranes for Improved Guided Bone Tissue Regeneration in Dental Applications
Keywords:
Electrospinning, poly(ε-caprolactone), nano-hydroxyapatite, polyethylene glycol, guided bone tissue regeneration, dental implants, biocompatibility, mechanical properties, wettability, cell viabilityAbstract
Background: Dental implantology relies on the presence of healthy bone tissue at the implant site. Guided bone tissue regeneration (GBTR) techniques enhance bone volume and quality, crucial for implant stability. Electrospun membranes, with their high surface area and porosity, are promising for GBTR due to their ability to mimic the extracellular matrix. Aim: This study investigates the preparation and characterization of electrospun membranes composed of poly(ε-caprolactone) (PCL), nano-hydroxyapatite (nano-HAp), and polyethylene glycol (PEG) for guided bone tissue regeneration in dentistry.
Methodology: PCL pellets were dissolved in chloroform with PEG to enhance electrospinnability. Nano-HAp particles were dispersed in the PCL solution. Electrospinning was employed to fabricate nanofibrous membranes. Characterization included SEM, FTIR, mechanical testing, wettability tests, and cell viability analysis using MG-63 cells through confocal microscopy.
Results: SEM confirmed the formation of nanofibrous structures with porous surfaces. FTIR validated the incorporation of nano-HAp. The experiment group showed higher mean tensile strength (4.70 MPa) and strain (12.68%) than the control (3.64 MPa and 10.22%). The experiment group exhibited a lower water contact angle (63.40°) compared to the control (90.00°). Confocal microscopy indicated superior cell attachment and proliferation on the experiment scaffolds. Discussion: The study demonstrated that electrospun membranes with PEG and nano-HAp significantly enhance mechanical properties, wettability, and biocompatibility compared to PCL-only membranes. The improved tensile strength, strain, and lower contact angle suggest better material integrity and hydrophilicity, essential for promoting cell adhesion and bone regeneration. Superior cell attachment and proliferation observed in the experiment group indicate that these membranes are more effective in supporting bone tissue regeneration.
Conclusion: PCL + PEG + nano-HAp membranes demonstrate enhanced mechanical properties, wettability, and biocompatibility, making them suitable for guided bone tissue regeneration in dentistry.
Downloads
Metrics
References
Abitha, S. T., Jeevitha, M., Jayaraman, S., & Kumar, M. N. (2021). Prevalence of the use of particulate graft versus block bone graft in ridge augmentation: A hospital based retrospective study. Journal of Pharmaceutical Research International, 254–262.
Berton, F., Porrelli, D., Di Lenarda, R., & Turco, G. (2019). A Critical Review on the Production of Electrospun Nanofibres for Guided Bone Regeneration in Oral Surgery. Nanomaterials (Basel, Switzerland), 10(1). https://doi.org/10.3390/nano10010016
Calciolari, E., Corbella, S., Gkranias, N., Viganó, M., Sculean, A., & Donos, N. (2023). Efficacy of biomaterials for lateral bone augmentation performed with guided bone regeneration. A network meta-analysis. Periodontology 2000. https://doi.org/10.1111/prd.12531
Chokkattu, J. J., Neeharika, S., Brahmajosyula, I. P., & Thangavelu, L. (2023). Comparative Evaluation Cellular Toxicity Three Heat Polymerized Acrylic Resins: Vitro Study. World, 14(6).
Cicciù, M., Pratella, U., Fiorillo, L., Bernardello, F., Perillo, F., Rapani, A., Stacchi, C., & Lombardi, T. (2023). Influence of buccal and palatal bone thickness on post-surgical marginal bone changes around implants placed in posterior maxilla: a multi-centre prospective study. BMC Oral Health, 23(1), 309.
Das, C., & Gebru, K. A. (2018). Polymeric Membrane Synthesis, Modification, and Applications: Electro-Spun and Phase Inverted Membranes. CRC Press.
Dharman, S., Maragathavalli, G., Shanmugam, R., & Shanmugasundaram, K. (2023). Biosynthesis Turmeric Silver Nanoparticles: Its Characterization Evaluation Antioxidant, Anti inflammatory, Antimicrobial Potential Against Oral Pathogens vitro Study. Journal Indian Academy Oral Medicine Radiology, 35(3), 299–305.
Doshi, K., Nivedhitha, M. S., Solete, P., Dp, S., Jacob, B., & Siddique, R. (2023). Effect adhesive strategy universal adhesives noncarious cervical lesions-an updated systematic review meta-analysis. BDJ open. 9.
Dotia, A., Selvaganesh, S., R P, A., & Nesappan, T. (2024). Dynamic Navigation Protocol for Direct Sinus Lift and Simultaneous Implant Placement: A Case Report. Cureus, 16(2), e53621.
Duraisamy, R., & Senior Lecturer, Department of Prosthodontics and Implantology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences. (2021). Biocompatibility and Osseointegration of Nanohydroxyapatite. International Journal of Dentistry and Oral Science, 4136–4139.
E, D. S., Paulraj, J., Maiti, S., & Shanmugam, R. (2024). Comparative Analysis of Color Stability and Its Impact on Artificial Aging: An In Vitro Study of Bioactive Chitosan, Titanium, Zirconia, and Hydroxyapatite Nanoparticle-Reinforced Glass Ionomer Cement Compared With Conventional Glass Ionomer Cement. Cureus, 16(2), e54517.
Gandhi, J. M., Gurunathan, D., Doraikannan, S., & Balasubramaniam, A. (2021). Oral health status for primary dentition - A pilot study. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 39(4), 369–372.
Givens, S. R. (2008). The Effect of Solvent Properties on Electrospun Polymer Fibers and Applications in Biomaterials.
Govindaraj, P., & Shanmugam, R. (2023). Effect chlorhexidine fluoride varnish incidence white spot lesion orthodontic patients. Annals Dental Specialty, 11(1-2023), 35–39.
Hilal, N., Ismail, A. F., Matsuura, T., & Oatley-Radcliffe, D. (2017). Membrane Characterization. Elsevier.
Janani, K., Teja, K. V., & Ajitha, P. (2021). Cytotoxicity of oregano essential oil and calcium hydroxide on L929 fibroblast cell: A molecular level study. Journal of Conservative Dentistry: JCD, 24(5), 457–463.
Jang, H. J., Kang, M. S., Kim, W.-H., Jo, H. J., Lee, S.-H., Hahm, E. J., Oh, J. H., Hong, S. W., Kim, B., & Han, D.-W. (2023). 3D printed membranes of polylactic acid and graphene oxide for guided bone regeneration. Nanoscale Advances, 5(14), 3619–3628.
Jawaid, M., Thariq, M., & Saba, N. (2018). Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Woodhead Publishing.
Kachhara, S., Nallaswamy, D., Ganapathy, D., & Ariga, P. (2021). Comparison of the CBCT, CT, 3D printing, and CAD-CAM milling options for the most accurate root form duplication required for the root analogue implant (RAI) protocol. Journal of Indian Academy of Oral Medicine and Radiology, 33(2), 141–145.
Kandhari, S., Khalid, S., James, A., & Laverty, D. P. (2023). Bone grafting techniques and materials for implant dentistry. British Dental Journal, 235(3), 180–189.
Katyal, D., Jain, R. K., Sankar, G. P., & Prasad, S. (2023). Antibacterial, Cytotoxic, Mechanical Characteristics Novel Chitosan-Modified Orthodontic Primer: : In-Vitro: Study. Journal International Oral Health, 15(3), 284–289.
Lampl, S., Gurunathan, D., Krithikadatta, J., Mehta, D., & Moodley, D. (2023). Reasons for Failure of CAD/CAM Restorations in Clinical Studies: A Systematic Review and Meta-analysis. The Journal of Contemporary Dental Practice, 24(2), 129–136.
Lee, J.-H., An, H.-W., Im, J.-S., Kim, W.-J., Lee, D.-W., & Yun, J.-H. (2023). Evaluation of the clinical and radiographic effectiveness of treating peri-implant bone defects with a new biphasic calcium phosphate bone graft: a prospective, multicenter randomized controlled trial. Journal of Periodontal & Implant Science, 53(4), 306–317.
Liang, C., Wang, G., Liang, C., Li, M., Sun, Y., Tian, W., & Liao, L. (2024). Hierarchically patterned triple-layered gelatin-based electrospun membrane functionalized by cell-specific extracellular matrix for periodontal regeneration. Dental Materials: Official Publication of the Academy of Dental Materials, 40(1), 90–101.
Mahmoud, A. H., Han, Y., Dal-Fabbro, R., Daghrery, A., Xu, J., Kaigler, D., Bhaduri, S. B., Malda, J., & Bottino, M. C. (2023). Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration. ACS Applied Materials & Interfaces, 15(27), 32121–32135.
Pandiyan, I., Arumugham, M. I., Doraikannan, S. S., Rathinavelu, P. K., Prabakar, J., & Rajeshkumar, S. (2023). Antimicrobial and Cytotoxic Activity of Ocimum tenuiflorum and Stevia rebaudiana-Mediated Silver Nanoparticles - An In vitro Study. Contemporary Clinical Dentistry, 14(2), 109–114.
Pavithra, S., Paulraj, J., Rajeshkumar, S., & Maiti, S. (2023). Comparative evaluation antimicrobial activity compressive strength conventional thyme-modified glass ionomer cement. Annals Dental Specialty, 11(1-2023), 70–77.
Priyadharshini, G., Gheena, S., Ramani, P., Rajeshkumar, S., & Ramalingam, K. (2023). Assessment antimicrobial efficacy cytotoxicity Cocos nucifera Triticum aestivum combination gel formulation therapeutic use. World Journal Dentistry, 14(5), 414–418.
Priya Veeraraghavan, V., Bharathidasan, P., Gayathri, R., & Kavitha. (2023). Biogenic Selenium nanoparticles loaded alginate-gelatin scaffolds for potential tissue engineering applications. Texila International Journal of Public Health, 86–93.
Priya Veeraraghavan, V., Rilah, K., Gayathri, R., & Kavitha. (2023). Fabrication, characterization, antibacterial and biocompatibility studies of graphene oxide loaded alginate chitosan scaffolds for potential biomedical applications. Texila International Journal of Public Health, 77–85.
Rajeshkumar, S., & Lakshmi, T. (2021). Green synthesis gold nanoparticles using kalanchoe pinnata its free radical scavenging activity. Int J Dentistry Oral Sci, 8(7), 2981–2984.
Ramamurthy, J., & Bajpai, D. (2024). Role of alginate-based scaffolds for periodontal regeneration of intrabony defects: A systematic review. World Journal of Dentistry, 15(2), 181–187.
Ramsundar, K., Jain, R. K., Balakrishnan, N., & Vikramsimha, B. (2023). Comparative evaluation bracket bond failure rates novel non-primer adhesive conventional primer-based orthodontic adhesive-a pilot study. Journal Dental Research, 17(1).
Rieshy, V., Chokkattu, J. J., Rajeshkumar, S., & Neeharika, S. (2023). Mechanism action clove ginger herbal formulation-mediated TiO2 nanoparticles against lactobacillus species: vitro study. Journal Advanced Oral Research, 14(1), 61–66.
Sairaman, S., Nivedhitha, M. S., Shrivastava, D., Al Onazi, M. A., Algarni, H. A., Mustafa, M., Alqahtani, A. R., AlQahtani, N., Teja, K. V., Janani, K., Eswaramoorthy, R., Sudhakar, M. P., Alam, M. K., & Srivastava, K. C. (2022). Biocompatibility and antioxidant activity of a novel carrageenan based injectable hydrogel scaffold incorporated with Cissus quadrangularis: an in vitro study. BMC Oral Health, 22(1), 377.
Senthil, R. (2024). Silk fibroin sponge impregnated with fish bone collagen: A promising wound healing scaffold and skin tissue regeneration. The International Journal of Artificial Organs, 47(5), 338–346.
Shah, T., Surendar, S., & Singh, S. (2023). Green Synthesis of Zinc Oxide Nanoparticles Using Ananas comosus Extract: Preparation, Characterization, and Antimicrobial Efficacy. Cureus, 15(10), e47535.
Shankar, P., Arumugam, P., & Kannan, S. (2024). Development, characterisation and biocompatibility analysis of a collagen-gelatin-hydroxyapatite scaffold for guided Bone Regeneration. Odovtos - International Journal of Dental Sciences, 235–248.
Shenoy, A., Maiti, S., Nallaswamy, D., & Keskar, V. (2023). An in vitro comparison of the marginal fit of provisional crowns using the virtual tooth preparation workflow against the traditional technique. Journal of Indian Prosthodontic Society, 23(4), 391–397.
Singh, S., Prasad, A. S., & Rajeshkumar, S. (2023). Cytotoxicity, antimicrobial, anti-inflammatory and antioxidant activity of camellia sinensis and citrus mediated copper oxide nanoparticle-an in vitro study. Journal of International Society of Preventive & Community Dentistry, 13(6), 450–457.
Sivakumar, N., Geetha, R. V., Priya, V., Gayathri, R., & Ganapathy, D. (2021). Targeted phytotherapy forreactive oxygen species linked oral cancer. Int J Dent Oral Sci, 8.
Sivakumar, N. K., Palaniyappan, S., Vishal, K., Alibrahim, K. A., Alodhayb, A., & Kumar, M. (2024). Crushing behavior optimization of octagonal lattice‐structured thin‐walled 3D printed carbon fiber reinforced PETG (CF/PETG) composite tubes under axial loading. Polymer Composites, 45(2), 1228–1249.
Subramanian, A. K., Lalit, H., & Sivashanmugam, P. (2023). Preparation, characterization, and evaluation of cytotoxic activity of a novel titanium dioxide nanoparticle-infiltrated orthodontic adhesive: An in vitro study. World Journal of Dentistry, 14(10), 882–887.
Su, H. (2020). IN VITRO AND IN VIVO EVALUATION AND MECHANICAL IMPROVEMENT OF THE ELECTROSPUN CHITOSAN MEMBRANE.
Thomas, & Jain, R. K. (2023). Influence operator experience scanning time accuracy two different intraoral scanners-a prospective clinical trial. Turkish Journal Orthodontics, 36(1).
Tolstunov, L. (2022). Essential Techniques of Alveolar Bone Augmentation in Implant Dentistry: A Surgical Manual. John Wiley & Sons.
Tripathi, G., Ho, V. H., Jung, H.-I., & Lee, B.-T. (2023). Physico-mechanical and in-vivo evaluations of tri-layered alginate-gelatin/polycaprolactone-gelatin-β-TCP membranes for guided bone regeneration. Journal of Biomaterials Science. Polymer Edition, 34(1), 18–34.
Vishva, P., R, N., & Harikrishnan, S. (2023). The Effect of Platelet-Rich Plasma on Bone Volume in Secondary Alveolar Bone Grafting in Alveolar Cleft Patients: A Systematic Review. Cureus, 15(9), e46245.
Watcharajittanont, N., Putson, C., Pripatnanont, P., & Meesane, J. (2023). Corrigendum: Layer-by-layer electrospun membranes of polyurethane/silk fibroin based on mimicking of oral soft tissue for guided bone regeneration (201914 055011). Biomedical Materials , 18(5). https://doi.org/10.1088/1748-605X/ace6e7
Wu, V., Klein-Nulend, J., Bravenboer, N., Ten Bruggenkate, C. M., Helder, M. N., & Schulten, E. A. J. M. (2023). Long-Term Safety of Bone Regeneration Using Autologous Stromal Vascular Fraction and Calcium Phosphate Ceramics: A 10-Year Prospective Cohort Study. Stem Cells Translational Medicine, 12(9), 617–630.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.