Design and Evaluation of Nanoparticle Formulations for Improved Drug Bioavailability
Keywords:
Bioavailability, Nanotechnology, Drug Delivery Systems, Nanoparticles, Lipid Nanoparticles, Magnetic NanoparticlesAbstract
Bioavailability is an important component in the effectiveness of oral medication formulations because it determines the amount and pace at which a drug reaches its target site of action. Poor solubility and absorption are significant hurdles to the development of many promising medication candidates. Nanotechnology, namely nanoparticle-based medicine delivery systems, has emerged as a viable answer to these issues. This study investigates the use of nanotechnology to improve drug solubility, stability, and bioavailability via several nanoparticle formulations, including lipid nanoparticles, magnetic nanoparticles, and polymeric nanoparticles. These nanocarriers not only improve drug solubility, but also provide controlled and prolonged drug release, preserve pharmaceuticals from degradation, and allow for targeted distribution to specific areas in the body, thereby reducing adverse effects. Furthermore, the integration of artificial intelligence (AI) and computational tools has improved nanoparticle design, allowing for the development of tailored therapeutics. The paper focuses on major advances in nanotechnology and its role in altering drug delivery systems, with promising methods for increasing the bioavailability of poorly soluble medicines. Despite advancements, difficulties like as scalability, regulatory constraints, and long-term biocompatibility must be addressed to ensure successful clinical translation
Downloads
Metrics
References
Bhandare, A., & Nannor, K. M. (2024). Bioavailability in drug design and development: A comprehensive review. World Journal of Pharmaceutical Research, 13(17), 145-168.
Xie, L., Hong, Y., Hu, Y., Li, H., Lou, J., & Zhou, X. (2025). Prioritizing oral bioavailability in drug development strategies. Future Medicinal Chemistry, 17(2), 149-151.
Pinal, R. (2024). Enhancing the bioavailability of poorly soluble drugs. Pharmaceutics, 16, 758.
Losada-Barreiro, S., Celik, S., Sezgin-Bayindir, Z., Bravo-Fernández, S., & Bravo-Díaz, C. (2024). Carrier systems for advanced drug delivery: Improving drug solubility/bioavailability and administration routes. Pharmaceutics, 16(7), 852.
Nyamba, I., Sombie, C. B., Yabre, M., Zime-Diawara, H., Yameogo, J., Ouedraogo, S., ... & Evrard, B. (2024). Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 114513.
Sura, R. S., Subrahmanyam, C. V. S., & Rachamalla, S. S. (2021). Development and evaluation of self micro emulsifying drug delivery system (SMEDDS) for nebivolol hydrochloride. International Journal of Life Sciences and Pharma Research, 11, 83–97. https://doi.org/10.22376/ijpbs/lpr.2021.11.6.P83-97
Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges, and opportunities. Nature Reviews Cancer, 17, 20–37. https://doi.org/10.1038/nrc.2016.108
Bazak, R., Houri, M., El Achy, S., Kamel, S., & Refaat, T. (2015). Cancer active targeting by nanoparticles: A comprehensive review of literature. Journal of Cancer Research and Clinical Oncology, 141, 769–784. https://doi.org/10.1007/s00432-014-1767-3
Gao, W., Chen, Y., Zhang, Y., Zhang, Q., & Zhang, L. (2018). Nanoparticle-based local antimicrobial drug delivery. Advanced Drug Delivery Reviews, 127, 46–57. https://doi.org/10.1016/j.addr.2017.09.015
Lee, J. W., & Prausnitz, M. R. (2018). Drug delivery using microneedle patches: Not just for skin. Expert Opinion on Drug Delivery, 15(6), 541-543.
Bourang, S., Asadian, S., Noruzpour, M., Mansuryar, A., Azizi, S., Ebrahimi, H. A., & Hooshyar, V. A. (2024). PLA-HA/Fe3O4 magnetic nanoparticles loaded with curcumin: Physicochemical characterization and toxicity evaluation in HCT116 colorectal cancer cells. SN Applied Sciences, 6, 186. https://doi.org/10.1007/s42452-024-05858-6
Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86, 215–223. https://doi.org/10.1016/j.yexmp.2008.12.004
Ahmadi, F., Saeedi, M., Akbari, J., Seyedabadi, M., Ebrahimnejad, P., Morteza-Semnani, K., Ghasemi, S., Moalem-Banhangi, M., Babaei, A., Hashemi, S. M. H., et al. (2023). Nanohybrid based on (Mn, Zn) ferrite nanoparticles functionalized with chitosan and sodium alginate for loading of curcumin against human breast cancer cells. AAPS PharmSciTech, 24, 222. https://doi.org/10.1208/s12249-023-02683-9
Ansari, S. R., Hempel, N.-J., Asad, S., Svedlindh, P., Bergström, C. A. S., Löbmann, K., & Teleki, A. (2022). Hyperthermia-induced in situ drug amorphization by superparamagnetic nanoparticles in oral dosage forms. ACS Applied Materials & Interfaces, 14, 21978–21988. https://doi.org/10.1021/acsami.2c03556
Aghaei, A., Sadiqi, H., Mohammad, A. A. K., Gulmohammad, A. W., Likozar, B., Nosrati, H., Danafar, H., & Shaterian, M. (2023). Magnetic ferrite nanoparticles coated with bovine serum albumin and glycine polymers for controlled release of curcumin as a model. Journal of Biomaterials Science, Polymer Edition, 34, 2537–2550. https://doi.org/10.1080/09205063.2023.2265181
Idris, A. H., Abdullah, C. A. C., Yusof, N. A., Asmawi, A. A., & Rahman, M. B. A. (2023). Nanostructured lipid carrier co-loaded with docetaxel and magnetic nanoparticles: Physicochemical characterization and in vitro evaluation. Pharmaceutics, 15, 1319. https://doi.org/10.3390/pharmaceutics15051319
Xie, M., Meng, F., Wang, P., Díaz-García, A. M., Parkhats, M., Santos-Oliveira, R., Asim, M., Bostan, N., Gu, H., Yang, L., et al. (2024). Surface engineering of magnetic iron oxide nanoparticles for breast cancer diagnostics and drug delivery. International Journal of Nanomedicine, 19, 8437–8461. https://doi.org/10.2147/IJN.S477652
Kjeldsen, R. B., Ghavami, M., Thamdrup, L. H., & Boisen, A. (2023). Magnetic and/or radiopaque functionalization of self-unfolding foils for improved applicability within oral drug delivery. ACS Biomaterials Science & Engineering, 9, 6773–6782. https://doi.org/10.1021/acsbiomaterials.3c01038
Lodi, M. B., Corda, E. M. A., Desogus, F., Fanti, A., & Mazzarella, G. (2024). Modeling of magnetic scaffolds as drug delivery platforms for tissue engineering and cancer therapy. Bioengineering, 11, 573. https://doi.org/10.3390/bioengineering11060573
Hussain, A., Dar, M. N. R., Cheema, W. K., Kanwal, R., & Han, Y. (2024). Investigating hybrid nanoparticles for drug delivery in multi-stenosed catheterized arteries under magnetic field effects. Scientific Reports, 14, 1170. https://doi.org/10.1038/s41598-024-51607-5
Slavu, L. M., Antonelli, A., Scarpa, E., Abdalla, P., Wilhelm, C., Silvestri, N., Pellegrino, T., Scheffler, K., Magnani, M., Rinaldi, R., et al. (2023). Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents. Biomaterials Science, 11, 3252–3268. https://doi.org/10.1039/D3BM00264K
Duraisamy, K., Gangadharan, A., Martirosyan, K. S., Sahu, N. K., Manogaran, P., & Kreedapathy, G. E. (2022). Fabrication of multifunctional drug-loaded magnetic phase supported calcium phosphate nanoparticle for local hyperthermia combined drug delivery and antibacterial activity. ACS Applied Bio Materials, 6, 104–116. https://doi.org/10.1021/acsabm.2c00768
Alishiri, M., Ebrahimi, S., Shamloo, A., Boroumand, A., & Mofrad, M. R. K. (2021). Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields. Engineering Applications of Computational Fluid Mechanics, 15, 1703–1725. https://doi.org/10.1080/19942060.2021.1989042
Stuurman, F. E., Nuijen, B., Beijnen, J. H., & Schellens, J. H. (2013). Oral anticancer drugs: Mechanisms of low bioavailability and strategies for improvement. Clinical Pharmacokinetics, 52, 399–414.
Bhalani, D. V., Nutan, B., Kumar, A., & Singh Chandel, A. K. (2022). Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2055.
Kumar, M., Kumar, D., Kumar, S., Kumar, A., & Mandal, U. K. (2022). A recent review on bio-availability enhancement of poorly water-soluble drugs by using bioenhancer and nanoparticulate drug delivery system. Current Pharmaceutical Design, 28(39), 3212–3224.
Eisenmann, E. D., Talebi, Z., Sparreboom, A., & Baker, S. D. (2022). Boosting the oral bioavailability of anticancer drugs through intentional drug–drug interactions. Basic & Clinical Pharmacology & Toxicology, 130, 23–35.
Stielow, M., Witczyńska, A., Kubryń, N., Fijałkowski, Ł., Nowaczyk, J., & Nowaczyk, A. (2023). The bioavailability of drugs—the current state of knowledge. Molecules, 28(24), 8038.
Kumari, L., Choudhari, Y., Patel, P., Gupta, G. D., Singh, D., Rosenholm, J. M., ... & Kurmi, B. D. (2023). Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. Life, 13(5), 1099.
Alizadeh, S. R., Savadkouhi, N., & Ebrahimzadeh, M. A. (2023). Drug design strategies that aim to improve the low solubility and poor bioavailability conundrum in quercetin derivatives. Expert Opinion on Drug Discovery, 18(10), 1117–1132.
Kapoor, D. U., Sharma, J. B., Gandhi, S. M., Prajapati, B. G., Thanawuth, K., Limmatvapirat, S., & Sriamornsak, P. (2024). AI-driven design and optimization of nanoparticle-based drug delivery systems. Science, Engineering and Health Studies, 24010003. https://doi.org/10.1016/j.sehs.2024.06.003
Yu, M., Zhou, D., Oberoi, H. S., Salem, A. H., McKee, L. A., Arnholt, J. R., ... & Law, D. (2025). Scale-up and clinical bioavailability assessment of a 45% drug-loaded amorphous nanoparticle formulation of a BCS IV compound for oral delivery. Journal of Pharmaceutical Sciences, 114(1), 383–393. https://doi.org/10.1016/j.xphs.2024.10.021
Zhuo, Y., Zhao, Y. G., & Zhang, Y. (2024). Enhancing drug solubility, bioavailability, and targeted therapeutic applications through magnetic nanoparticles. Molecules, 29(20), 4854. https://doi.org/10.3390/molecules29204854
Gangavarapu, A., Tapia-Lopez, L. V., Sarkar, B., Pena-Zacarias, J., Badruddoza, A. Z. M., & Nurunnabi, M. (2024). Lipid nanoparticles for enhancing oral bioavailability. Nanoscale, 16(39), 18319–18338. https://doi.org/10.1039/d4nr05185k
Maurya, R., Vikal, A., Patel, P., Narang, R. K., & Kurmi, B. D. (2024). Enhancing oral drug absorption: Overcoming physiological and pharmaceutical barriers for improved bioavailability. AAPS PharmSciTech, 25(7), 228. https://doi.org/10.1208/s12249-024-02156-w
.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.