Revolutionary biomarkers: Transforming the Future of Parkinsonism Diagnosis
DOI:
https://doi.org/10.52783/jns.v14.3038Keywords:
Parkinson’s disease, neurodegenerative disease, biomarker, diagnosisAbstract
Introduction: After Alzheimer's disease, Parkinson's disease (PD), which is distinguished by gradual motor impairment, is the subsequent prominent neurodegenerative movement disease. Differentiating PD from other Parkinsonian disorders is challenging due to overlapping symptoms.
Objective: This review aims to provide a comprehensive overview of current developments in the search for biomarkers for Parkinson's disease (PD), with a focus on their utility in differentiating PD from other Parkinsonian syndromes.
Methods: A thorough analysis of existing literature was conducted also explores relevant research articles, clinical trials, and meta-analyses to discuss their applications in early detection, differential diagnosis, and monitoring disease progression.
Results: α-Synuclein Seed Amplification Assays (SAAs) in CSF show great promise for early and accurate PD diagnosis due to their high sensitivity and specificity. GFAP, while less specific, can be valuable for monitoring neurodegeneration severity. CSF levels of Aβ42, p-tau, and t-tau can help predict cognitive impairment in PD, particularly in differentiating PDD from PDMCI. YKL-40 can differentiate as well as activation of macrophages and microglia. Integrating non-motor symptom assessments with objective biomarker measurements may improve the accuracy of early PD diagnosis.
Conclusion: CSF biomarkers, particularly α-Synuclein SAAs, hold significant potential for improving the diagnosis and management of PD. While individual biomarkers have limitations, combining them with clinical assessments and auxiliary methods can enhance diagnostic accuracy. Further research, including longitudinal studies and validation in diverse cohorts, is needed to fully realize the clinical utility of these biomarkers in predicting treatment response and understanding the underlying pathophysiology of PD.
Downloads
Metrics
References
Jankovic J, Mazziotta JC, Pomeroy SL. Bradley's Neurology in Clinical Practice E-Book. Elsevier Health Sciences; 2021 Mar 23.
Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain. 1991 Oct;114(5):2283-301.
Ben-Shlomo Y, Wenning G. Incidental Lewy body disease. The Lancet. 1994 Nov 26;344(8935):1503.
Michell AW, Lewis SJ, Foltynie T, Barker RA. Biomarkers and Parkinson's disease. Brain. 2004 Aug 1;127(8):1693-705.
Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ. Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology. 2003 Feb 25;60(4):601-5.
Schapira AH. Mitochondrial disease. The Lancet. 2006 Jul 1;368(9529):70-82.
Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G. Missing pieces in the Parkinson's disease puzzle. Nature medicine. 2010 Jun;16(6):653-61.
Kwon EH, Tennagels S, Gold R, Gerwert K, Beyer L, Tönges L. Update on CSF biomarkers in Parkinson’s disease. Biomolecules. 2022 Feb 18;12(2):329.
Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson’s disease: recent advancement. Neuroscience bulletin. 2017 Oct;33:585-97.
Rodrigues SM, Henriques B, Da Silva EF, Pereira ME, Duarte AC, Römkens PF. Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I–The role of key soil properties in the variation of contaminants’ reactivity. Chemosphere. 2010 Dec 1;81(11):1549-59.
Shu H, Zhang P, Gu L. Alpha-synuclein in peripheral body fluid as a biomarker for Parkinson’s disease. Acta Neurologica Belgica. 2024 Jun;124(3):831-42.
Ballard C, Ziabreva I, Perry R, Larsen JP, O'brien J, McKeith I, Perry E, Aarsland D. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology. 2006 Dec 12;67(11):1931-4.
Shahnawaz M, Tokuda T, Waragai M, Mendez N, Ishii R, Trenkwalder C, Mollenhauer B, Soto C. Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA neurology. 2017 Feb 1;74(2):163-72.
Kang UJ, Boehme AK, Fairfoul G, Shahnawaz M, Ma TC, Hutten SJ, Green A, Soto C. Comparative study of cerebrospinal fluid α‐synuclein seeding aggregation assays for diagnosis of Parkinson's disease. Movement Disorders. 2019 Apr;34(4):536-44.
Fairfoul G, McGuire LI, Pal S, Ironside JW, Neumann J, Christie S, et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Transl Neurol. 2016 Oct;3(10):812-8.
Rossi M, Candelise N, Baiardi S, Capellari S, Giannini G, Orrù CD, Antelmi E, Mammana A, Hughson AG, Calandra-Buonaura G, Ladogana A. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta neuropathologica. 2020 Jul;140:49-62.
von Euler Chelpin M, Söderberg L, Fälting J, Möller C, Giorgetti M, Constantinescu R, Blennow K, Zetterberg H, Höglund K. Alpha-Synuclein Protofibrils in Cerebrospinal Fluid: A Potential Biomarker for Parkinson's Disease. Journal of Parkinson's Disease. 2020 Jan 1;10(4):1429-42.
Siderowf A, Concha-Marambio L, Lafontant DE, Farris CM, Ma Y, Urenia PA, Nguyen H, Alcalay RN, Chahine LM, Foroud T, Galasko D. Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. The Lancet Neurology. 2023 May 1;22(5):407-17.
Tokuda T, Qureshi MM, Ardah MT, Varghese S, Shehab SA, Kasai T, Ishigami N, Tamaoka A, Nakagawa M, El-Agnaf OM. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology. 2010 Nov 16;75(20):1766-70.
Park MJ, Cheon SM, Bae HR, Kim SH, Kim JW. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson's disease. Journal of clinical neurology. 2011 Dec;7(4):215-22.
Sierks MR, Chatterjee G, McGraw C, Kasturirangan S, Schulz P, Prasad S. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integrative Biology. 2011 Dec 1;3(12):1188-96.
Cabezas R, Avila MF, Torrente D, El-Bachá RS, Morales L, Gonzalez J, Barreto GE. Astrocytes role in Parkinson: a double-edged sword. InNeurodegenerative Diseases 2013 May 15. IntechOpen.
Magdalinou N, Lees AJ, Zetterberg H. Cerebrospinal fluid biomarkers in parkinsonian conditions: an update and future directions. Journal of Neurology, Neurosurgery & Psychiatry. 2014 Oct 1;85(10):1065-75.
Mayer CA, Brunkhorst R, Niessner M, Pfeilschifter W, Steinmetz H, Foerch C. Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PloS one. 2013 Apr 23;8(4):e62101.
Jiménez-Jiménez FJ, Alonso-Navarro H, Garcia-Martin E, Agúndez JA. Cerebrospinal fluid biochemical studies in patients with Parkinson's disease: toward a potential search for biomarkers for this disease. Frontiers in cellular neuroscience. 2014 Nov 11;8:369.
Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends in neurosciences. 2015 Jun 1;38(6):364-74.
Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, Deane R, Nedergaard M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. Journal of Neuroscience. 2015 Jan 14;35(2):518-26.
Oeckl P, Halbgebauer S, Anderl-Straub S, Steinacker P, Huss AM, Neugebauer H, von Arnim CA, Diehl-Schmid J, Grimmer T, Kornhuber J, Lewczuk P. Glial fibrillary acidic protein in serum is increased in Alzheimer’s disease and correlates with cognitive impairment. Journal of Alzheimer’s Disease. 2019 Jan 22;67(2):481-8.
Abu-Rumeileh S, Steinacker P, Polischi B, Mammana A, Bartoletti-Stella A, Oeckl P, Baiardi S, Zenesini C, Huss A, Cortelli P, Capellari S. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimer's research & therapy. 2020 Dec;12:1-5.
Ishiki A, Kamada M, Kawamura Y, Terao C, Shimoda F, Tomita N, Arai H, Furukawa K. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer's disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. Journal of neurochemistry. 2016 Jan;136(2):258-61.
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R. Cerebrospinal fluid biomarkers of Alzheimer’s disease: current evidence and future perspectives. Brain sciences. 2021 Feb 10;11(2):215.
Santangelo G, Vitale C, Picillo M, Moccia M, Cuoco S, Longo K, Pezzella D, di Grazia A, Erro R, Pellecchia MT, Amboni M. Mild cognitive impairment in newly diagnosed Parkinson's disease: a longitudinal prospective study. Parkinsonism & Related Disorders. 2015 Oct 1;21(10):1219-26.
Garcia-Ptacek S, Kramberger MG. Parkinson disease and dementia. J Geriatr Psychiatry Neurol. 2016 Sep;29(5):261-70.
Hu X, Yang Y, Gong D. Changes of cerebrospinal fluid Aβ 42, t-tau, and p-tau in Parkinson’s disease patients with cognitive impairment relative to those with normal cognition: a meta-analysis. Neurological Sciences. 2017 Nov;38:1953-61.
Nabizadeh F, Pirahesh K, Ramezannezhad E. Longitudinal striatal dopamine transporter binding and cerebrospinal fluid alpha-synuclein, amyloid beta, total tau, and phosphorylated tau in Parkinson’s disease. Neurological Sciences. 2023 Feb;44(2):573-85.
Espay AJ, Lafontant DE, Poston KL, Caspell-Garcia C, Marsili L, Cho HR, et al. Low soluble amyloid-β 42 is associated with smaller brain volume in Parkinson's disease. Parkinsonism Relat Disord. 2021 Nov 1;92:15-21.
Renkema GH, Boot RG, Au FL, Donker‐Koopman WE, Strijland A, Muijsers AO, Hrebicek M, Aerts JM. Chitotriosidase, a chitinase, and the 39‐kDa human cartilage glycoprotein, a chitin‐binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. European Journal of Biochemistry. 1998 Jan 1;251(1‐2):504-9.
Illán-Gala I, Alcolea D, Montal V, Dols-Icardo O, Muñoz L, De Luna N, Turón-Sans J, Cortés-Vicente E, Sánchez-Saudinós MB, Subirana A, Sala I. CSF sAPPβ, YKL-40, and NfL along the ALS-FTD spectrum. Neurology. 2018 Oct 23;91(17):e1619-28.
Alcolea D, Martínez-Lage P, Sánchez-Juan P, Olazarán J, Antúnez C, Izagirre A, Ecay-Torres M, Estanga A, Clerigué M, Guisasola MC, Sánchez Ruiz D. Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology. 2015 Aug 18;85(7):626-33.
Morenas-Rodríguez E, Alcolea D, Suárez-Calvet M, Muñoz-Llahuna L, Vilaplana E, Sala I, Subirana A, Querol-Vilaseca M, Carmona-Iragui M, Illán-Gala I, Ribosa-Nogué R. Different pattern of CSF glial markers between dementia with Lewy bodies and Alzheimer’s disease. Scientific reports. 2019 May 24;9(1):7803.
Anwar MM, Fathi MH. Early approaches of YKL-40 as a biomarker and therapeutic target for Parkinson's disease. Neurodegenerative Disease Management. 2023 Apr;13(2):85-99.
Gevezova M, Kazakova M, Trenova A, Sarafian V. YKL-40 and the Cellular Metabolic Profile in Parkinson’s Disease. Int J Mol Sci. 2023 Nov 16;24(22):16297.
Tönges L, Buhmann C, Klebe S, Klucken J, Kwon EH, Müller T, Pedrosa DJ, Schröter N, Riederer P, Lingor P. Blood-based biomarker in Parkinson’s disease: potential for future applications in clinical research and practice. Journal of Neural Transmission. 2022 Sep;129(9):1201-17.
Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, Fox M, Goldstein JM, Soriano F, Seubert P, Chilcote TJ. Red blood cells are the major source of alpha-synuclein in blood. Neurodegenerative diseases. 2008 Jan 4;5(2):55-9.
El-Agnaf OM, Salem SA, Paleologou KE, Cooper LJ, Fullwood NJ, Gibson MJ, et al. α‐Synuclein implicated in Parkinson's disease is present in extracellular biological fluids, including human plasma. FASEB J. 2003 Sep;17(13):1-16.
Beyer K, Ariza A. Protein aggregation mechanisms in synucleinopathies: commonalities and differences. Journal of Neuropathology & Experimental Neurology. 2007 Nov 1;66(11):965-74.
Murray IV, Lee VM, Trojanowski JQ. Synucleinopathies: a pathological and molecular review. Clinical Neuroscience Research. 2001 Dec 1;1(6):445-55.
Wakabayashi K, Hayashi S, Kakita A, Yamada M, Toyoshima Y, Yoshimoto M, Takahashi H. Accumulation of α-synuclein/NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta neuropathologica. 1998 Oct;96:445-52.
Fogel BL, Clark MC, Geschwind DH. The neurogenetics of atypical parkinsonian disorders. Semin Neurol. 2014 Apr;34(2):217-24.
Newman EJ, Breen K, Patterson J, Hadley DM, Grosset KA, Grosset DG. Accuracy of Parkinson's disease diagnosis in 610 general practice patients in the West of Scotland. Movement Disorders. 2009 Dec 15;24(16):2379-85.
Pahwa R, Lyons KE. Early diagnosis of Parkinson’s disease: recommendations from diagnostic clinical guidelines. Am J Manag Care. 2010 Mar 1;16(4):94-9.
Adler CH, Beach TG, Hentz JG, Shill HA, Caviness JN, Driver-Dunckley E, Sabbagh MN, Sue LI, Jacobson SA, Belden CM, Dugger BN. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology. 2014 Jul 29;83(5):406-12.
Beach TG, Adler CH. Importance of low diagnostic accuracy for early Parkinson's disease. Movement Disorders. 2018 Oct;33(10):1551-4.
Schrag A, Ben-Shlomo Y, Quinn N. How valid is the clinical diagnosis of Parkinson's disease in the community?. Journal of Neurology, Neurosurgery & Psychiatry. 2002 Nov 1;73(5):529-34.
Skinner TR, Scott IA, Martin JH. Diagnostic errors in older patients: a systematic review of incidence and potential causes in seven prevalent diseases. International journal of general medicine. 2016 May 20:137-46.
Zubelzu M, Morera-Herreras T, Irastorza G, Gómez-Esteban JC, Murueta-Goyena A. Plasma and serum alpha-synuclein as a biomarker in Parkinson's disease: a meta-analysis. Parkinsonism & related disorders. 2022 Jun 1;99:107-15.
Dutta S, Hornung S, Kruayatidee A, Maina KN, Del Rosario I, Paul KC, et al. α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson's disease from multiple system atrophy. Acta Neuropathol. 2021 Sep;142(3):495-511.
Lin CH, Yang SY, Horng HE, Yang CC, Chieh JJ, Chen HH, Liu BH, Chiu MJ. Plasma α-synuclein predicts cognitive decline in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry. 2017 Oct 1;88(10):818-24.
Ng, A. S., Tan, Y. J., Lu, Z., Ng, E. Y., Ng, S. Y., Chia, N. S., ... & Tan, L. C. (2019). Plasma alpha‐synuclein detected by single molecule array is increased in PD. Annals of clinical and translational neurology, 6(3), 615-619.
Si X, Tian J, Chen Y, Yan Y, Pu J, Zhang B. Central nervous system-derived exosomal alpha-synuclein in serum may be a biomarker in Parkinson’s disease. Neuroscience. 2019 Aug 10;413:308-16.
Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, Pucha KA, Dalrymple-Alford J, Shoorangiz R, Meissner WG, Anderson T. Extracellular vesicle biomarkers for cognitive impairment in Parkinson’s disease. Brain. 2023 Jan 4;146(1):195-208.
Mata IF, Shi M, Agarwal P, Chung KA, Edwards KL, Factor SA, Galasko DR, Ginghina C, Griffith A, Higgins DS, Kay DM. SNCA variant associated with Parkinson disease and plasma α-synuclein level. Archives of neurology. 2010 Nov 8;67(11):1350-6.
Goldman JG, Andrews H, Amara A, Naito A, Alcalay RN, Shaw LM, et al. Cerebrospinal fluid, plasma, and saliva in the BioFIND study: relationships among biomarkers and Parkinson's disease features. Mov Disord. 2018 Feb;33(2):282-8.
Chung CC, Chan L, Chen JH, Hung YC, Hong CT. Plasma Extracellular Vesicle α-Synuclein Level in Patients with Parkinson's Disease. Biomolecules. 2021 May 1;11(5):744.
Khalil H, Alomari MA, Khabour OF, Al-Hieshan A, Bajwa JA. Circulatory levels of Bdnf correlate with cognitive deficits in people with Parkinson's disease. InMovement Disorders 2016 Jun 1 (Vol. 31, pp. S458-S458). 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY-BLACKWELL.
Braissant O. Neurofilament proteins in brain diseases. New research on neurofilament proteins. 2006:25-51.
Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019 Aug;90(8):870-81.
Buhmann C, Lezius S, Pötter‐Nerger M, Gerloff C, Kuhle J, Choe CU. Age‐adjusted serum neurofilament predicts cognitive decline in Parkinson's disease (MARK‐PD). Movement Disorders. 2022 Feb;37(2):435-6.
Chen JH, Chan L, Chung CC, Bamodu OA, Hong CT. Blood neurofilament light chain in Parkinson’s disease: Comparability between Parkinson’s progression markers initiative (ppmi) and Asian cohorts. J Clin Med. 2021 Nov 1;10(21):5085.
Lin YS, Lee WJ, Wang SJ, Fuh JL. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Scientific reports. 2018 Nov 26;8(1):17368.
Chung CC, Chan L, Chen JH, Bamodu OA, Hong CT. Neurofilament light chain level in plasma extracellular vesicles and Parkinson’s disease. Ther Adv Neurol Disord. 2020 Oct 1;13:1756286420975917.
Agliardi C, Meloni M, Guerini FR, Zanzottera M, Bolognesi E, Baglio F, Clerici M. Oligomeric α-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson's disease. Neurobiology of disease. 2021 Jan 1;148:105185.
Cerri S, Ghezzi C, Sampieri M, Siani F, Avenali M, Dornini G, Zangaglia R, Minafra B, Blandini F. The exosomal/total α-synuclein ratio in plasma is associated with glucocerebrosidase activity and correlates with measures of disease severity in PD patients. Frontiers in cellular neuroscience. 2018 May 18;12:125.
Chan L, Chung CC, Hsieh YC, Wu RM, Hong CT. Plasma extracellular vesicle tau, β-amyloid, and α-synuclein and the progression of Parkinson’s disease: a follow-up study. Therapeutic Advances in Neurological Disorders. 2023 Jan;16:17562864221150329.
Jiao Y, Zhu X, Zhou X, Li Y, Zhou L, Zhao A, Luo N, Niu M, Liu J. Collaborative plasma biomarkers for Parkinson disease development and progression: A cross‐sectional and longitudinal study. European Journal of Neurology. 2023 Oct;30(10):3090-7.
Sharafeldin M, Yan S, Jiang C, Tofaris GK, Davis JJ. Alternating magnetic field-promoted nanoparticle mixing: the on-chip immunocapture of serum neuronal exosomes for Parkinson’s disease diagnostics. Analytical Chemistry. 2023 May 11;95(20):7906-13.
Wang P, Lan G, Xu B, Yu Z, Tian C, Lei X, Meissner WG, Feng T, Yang Y, Zhang J. α-Synuclein-carrying astrocytic extracellular vesicles in Parkinson pathogenesis and diagnosis. Translational Neurodegeneration. 2023 Aug 25;12(1):40.
Yan S, Jiang C, Janzen A, Barber TR, Seger A, Sommerauer M, Davis JJ, Marek K, Hu MT, Oertel WH, Tofaris GK. Neuronally derived extracellular vesicle α-synuclein as a serum biomarker for individuals at risk of developing Parkinson disease. JAMA neurology. 2024 Jan 1;81(1):59-68.
Berg D, Schweitzer KJ, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brüssel T, Schulte C, Maass S, Nägele T, Wszolek ZK. Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease. Brain. 2005 Dec 1;128(12):3000-11..
Guella I, Evans DM, Szu-Tu C, Nosova E, Bortnick SF, SNCA Cognition Study Group, et al. α‐synuclein genetic variability: A biomarker for dementia in Parkinson disease. Ann Neurol. 2016 Jun;79(6):991-9.
Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R. Dopamine transporter imaging, current status of a potential biomarker: A comprehensive review. International Journal of Molecular Sciences. 2021 Oct 18;22(20):11234.
Suwijn SR, van Boheemen CJ, de Haan RJ, Tissingh G, Booij J, de Bie RM. The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: a systematic review. EJNMMI research. 2015 Dec;5:1-8.
den Heijer JM, Cullen VC, Pereira DR, Yavuz Y, de Kam ML, Grievink HW, et al. A Biomarker Study in Patients with GBA1‐Parkinson's Disease and Healthy Controls. Mov Disord. 2023 May;38(5):783-95.
Tunold JA, Geut H, Rozemuller JA, Henriksen SP, Toft M, Van de Berg WD, Pihlstrøm L. APOE And MAPT are associated with dementia in neuropathologically confirmed Parkinson's disease. Frontiers in Neurology. 2021 Feb 5;12:631145.
He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Application of neuromelanin MR imaging in Parkinson disease. J Magn Reson Imaging. 2023 Feb;57(2):337-52.
Vogt T, Kramer K, Gartenschlaeger M, Schreckenberger M. Estimation of further disease progression of Parkinson’s disease by dopamin transporter scan vs clinical rating. Parkinsonism & related disorders. 2011 Jul 1;17(6):459-63.
Piccini PP. Dopamine transporter: basic aspects and neuroimaging. Movement Disorders: Official Journal of the Movement Disorder Society. 2003 Oct;18(S7):S3-8.
Oravivattanakul S, Benchaya L, Wu G, Ahmed A, Itin I, Cooper S, Gostkowski M, Rudolph J, Appleby K, Sweeney P, Fernandez HH. Dopamine transporter (DaT) scan utilization in a movement disorder center. Movement Disorders Clinical Practice. 2016 Jan;3(1):31-5.
Bajaj N, Hauser RA, Grachev ID. Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes. Journal of Neurology, Neurosurgery & Psychiatry. 2013 Nov 1;84(11):1288-95.
Jennings D, Siderowf A, Stern M, Seibyl J, Eberly S, Oakes D, Marek K, PARS Investigators. Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter–deficit prodromal cohort. JAMA neurology. 2017 Aug 1;74(8):933-40.
Cosottini M, Frosini D, Pesaresi I, Costagli M, Biagi L, Ceravolo R, Bonuccelli U, Tosetti M. MR imaging of the substantia nigra at 7 T enables diagnosis of Parkinson disease. Radiology. 2014 Jun;271(3):831-8.
Oikawa H, Sasaki M, Tamakawa Y, Ehara S, Tohyama K. The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. American Journal of Neuroradiology. 2002 Nov 1;23(10):1747-56.
Anik Y, Iseri P, Demirci A, Komsuoglu S, Inan N. Magnetization transfer ratio in early period of Parkinson disease. Academic radiology. 2007 Feb 1;14(2):189-92.
Chau MT, Todd G, Wilcox R, Agzarian M, Bezak E. Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord. 2020 Sep;78:12-20.
Holtbernd F, Eidelberg D. The utility of neuroimaging in the differential diagnosis of parkinsonian syndromes. InSeminars in neurology 2014 Apr (Vol. 34, No. 02, pp. 202-209). Thieme Medical Publishers.
Kerstens VS, Fazio P, Sundgren M, Matheson GJ, Franzén E, Halldin C, Cervenka S, Svenningsson P, Varrone A. Reliability of dopamine transporter PET measurements with [18 F] FE-PE2I in patients with Parkinson’s disease. EJNMMI research. 2020 Dec;10:1-9.
Ananthasayanam JR, Anandan P, Mohanakrishnan A, Charitha K. Precision Imaging in Neurodegeneration: The Superiority of Diffusion Tensor Imaging Over Conventional MRI in Differentiating Parkinson’s Disease From Atypical Parkinsonian Syndromes. Cureus. 2024 Sep 8;16(9):e68933.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.