Enhancing Detection and Classification of Neurological Cancer Images using An Artificial Neural Network

Authors

  • D Jareena Begum
  • M. Diviya

DOI:

https://doi.org/10.52783/jns.v14.3000

Keywords:

Artificial neural network, Brain tumour, human clinicians, Pathologist, Curvelet transform

Abstract

Early cancer diagnosis using inexpensive and fast techniques could save many lives. Late-stage cancer treatment is difficult. Invasive or non-invasive brain cancer diagnosis is possible. ANN architecture must be carefully chosen for the application, as biopsy is intrusive. This research proposes a functional ANN model to improve diagnosis procedures. ANN research is hot in radiology, cardiology, and oncology. This study used ANNs in medicine. The study also attempted brain tumor diagnosis application. The MR picture requires the neural network to assess brain health. In the hands of human clinicians, this process has a high computational complexity. Experienced radiologists are necessary for accurate classification and segmentation of the brain tumour. We suggest a computer-aided diagnosis-based strategy for segmenting brain tumours as a means of getting around these problems. Below are the steps that make up the proposed artificial neural network and random forest algorithm, support vector machine method. An asymmetrical gradient filter is applied during preprocessing to reduce background noise and even out intensity variations. The artificial neural network is then used to determine if the input brain image is normal or pathological. The result is a model in the vector space. A greater success rate of 2.31% is achieved using the proposed strategy. When compared to other techniques, this one has a sensitivity of 5.81% and a specificity of 2.28%, respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Sert E, Ozyurt F, Dogantekin A. A new approach for brain tumor diagnosis system: single image super resolution based

maximum fuzzy entropy segmentation and convolutional neural network. Med Hypotheses. 2019;133:109413. doi:10.1016/j.mehy.2019.109413

Ozyurt F, Sert E, Avci E, Dogantekin E. Brain tumor detection based on convolutional neural network with neutrosophic expert maximum fuzzy sure entropy. Measurement. 2019;147: 106830. doi:10.1016/j.measurement.2019.07.058

Mittal M, Goyal M, Kaur S, Kaur I, Verma A, Hemanth J. Deep learning based enhanced tumor segmentation approach for MR brain images. Appl Soft Comput. 2019;78:346-354. doi: 10.1016/j.asoc.2019.02.036

Hussain S, Anwar M, Majid M. Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing. 2018;282:248-261. doi:10.1016/j.neucom.2017.12.032

Nema S, Dudhane A, Murala S, Naidu S. RescueNet: an unpaired GAN for brain tumor segmentation. Biomed Signal Process Control. 2020;55:101641. doi:10.1016/j.bspc.2019.101641

Khan H, Shah M, Shah A, Islam U, Rodrigues J. Cascading handcrafted features and Convolutional Neural Network for IoT-enabled brain tumor segmentation. Comput Commun. 2020;153:196-207. doi:10.1016/j.comcom.2020.01.013

Chang J, Zhang L, Gu N, et al. A mix-pooling CNN architecture with FCRF for brain tumor segmentation. J Vis Commun Image Represent. 2019;58:316-322. doi:10.1016/j.jvcir.2018. 11.047

Sajjad M, Khan S, Muhammad K, Wu W, Ullah A, Baik W. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci. 2019;30:174-182. doi:10.1016/j.jocs.2018.12.003

Saravanan, T., Saravanakumar, S., Rathinam, G. O. P. A. L., Narayanan, M., Poongothai, T., Patra, P. S. K., & Sengan, S. U. D. H. A. K. A. R. (2022). Malicious attack alleviation using improved time-based dimensional traffic pattern generation in uwsn. Journal of Theoretical and Applied Information Technology, 100(3), 682-689.

Sisik F, Sert E. Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware. Med Hypotheses. 2020;136:109507. doi:10.1016/j.mehy.2019.109507

Chen S, Ding C, Liu M. Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn.2019;88:90-100. doi:10.1016/j.patcog.2018.11.009

Mlynarski P, Delingette H, Criminisi A, Ayache N. 3D convolutional neural networks for tumor segmentation using longrange 2D context. Comput Med Imaging Graph. 2019;73:60-72.doi:10.1016/j.compmedimag.2019.02.001

Palma A, Cappabianco A, Jaime S, Miranda P. Anisotropic diffusion filtering operation and limitations-magnetic resonance imaging evaluation. IFAC Proc Vol. 2014;47(3):3887-3892. doi:10.3182/20140824-6-ZA-1003.02347

Niu X, Suen C. A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recogn. 2012;45(4):1318-1325. doi:10.1016/j.patcog.2011.09.021

Selvapandian A, Manivannan K. Performance analysis of meningioma brain tumor classifications based on gradient boosting classifier. Int J Imaging Syst Technol. 2018;28(4):295- 301. doi:10.1002/ima.22288

Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2015;34(10):1993-2024. doi:10.1109/TMI.2014.2377694

Saravanakumar, S. (2020). Certain analysis of authentic user behavioral and opinion pattern mining using classification techniques. Solid State Technology, 63(6), 9220-9234.

Othman, S. B., Almalki, F. A., &Sakli, H. (2022). Internet of things in the healthcare applications: overview of security and privacy issues. Intelligent Healthcare, 195-213.

Ang, K. L. M., Seng, J. K. P., &Ngharamike, E. (2022). Towards crowdsourcing internet of things (crowd-iot): Architectures, security and applications. Future Internet, 14(2), 49.

Saravanan, T., &Saravanakumar, S. (2021, December). Privacy Preserving using Enhanced Shadow Honeypot technique for Data Retrieval in Cloud Computing. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (pp. 1151-1154). IEEE.

Behera, N. K. S., Behera, T. K., Nappi, M., Bakshi, S., & Sa, P. K. (2021). Futuristic person re-identification over internet of biometrics things (IoBT): Technical potential versus practical reality. Pattern Recognition Letters, 151, 163-171.

Qadri, Y. A., Nauman, A., Zikria, Y. B., Vasilakos, A. V., & Kim, S. W. (2020). The future of healthcare internet of things: a survey of emerging technologies. IEEE Communications Surveys & Tutorials, 22(2), 1121-1167.

Saravanakumar, S., & Saravanan, T. (2023). Secure personal authentication in fog devices via multimodal rank‐level fusion. Concurrency and Computation: Practice and Experience, 35(10), e7673.

Thangavel, S., & Selvaraj, S. (2023). Machine Learning Model and Cuckoo Search in a modular system to identify Alzheimer’s disease from MRI scan images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(5), 1753-1761.

Downloads

Published

2025-04-04

How to Cite

1.
Begum DJ, Diviya M. Enhancing Detection and Classification of Neurological Cancer Images using An Artificial Neural Network. J Neonatal Surg [Internet]. 2025Apr.4 [cited 2025Sep.21];14(11S):391-402. Available from: https://jneonatalsurg.com/index.php/jns/article/view/3000