Current Scenario and Various Mechanisms of Antibiotic Resistance in Pediatric Infections – A Narrative Review

Authors

  • Mamta Naagar
  • Tanishq Gupta
  • Nishtha Loona
  • Karan Goel
  • Manish Kumar Maity

DOI:

https://doi.org/10.52783/jns.v14.2859

Keywords:

multidrug resistance, antibiotic resistance, infections, antimicrobial stewardship

Abstract

The threat posed by antibiotic resistance to public health is critical, particularly with regard to children. Data from the World Health Organisation indicates that infections with bacteria resistant to several drugs result in 700000 fatalities annually, of which 200000 are infant mortality. There are several facets to this growing problem that are unique to children. For example, the dearth of pediatric-specific data and studies contributes to the harmful overuse and abuse of antibiotics (for incorrect diagnosis and indications, or at improper dose). Due to the constantly changing nature of this age group, there is an additional problem: the population's biochemical characteristics and pharmacokinetic profiles are rather diverse, making it difficult to codify in an age or weight dependent dosage due to the partially age dependent changes of a developing system of cytochromes. The paediatric population is particularly negatively impacted by congenital deformities that frequently necessitate recurrent hospital stays as well as medical and surgical interventions starting at a very early age, as well as the contraindications of tetracyclines and fluoroquinolones. MRSA, VRSA, ESBL producing Enterobacteriaceae, carbapenem resistant Enterobacteriaceae, and the concerning colistin resistance are emerging risks for paediatric patients. Reversing the trend of uncomplicated illnesses leading to baby deaths in the very likely post-antibiotic era will need immediate intervention.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

4th Global Conference of Women Deliver. WHO Regional Office for Europe; Copenhagen, Denmark: 2016. [(accessed on 19 March 2021)]. Fight Antimicrobial Resistance: Protect Mothers and Newborns. Available online: http://who.int/drugresistance/activities/Women-Deliver-AMR-side-event-Handout-May2016.pdf?ua=1

Cassini A., Högberg L.D., Plachouras D., Quattrocchi A., Hoxha A., Simonsen G.S., Colomb-Cotinat M., Kretzschmar M.E., Devleesschauwer B., Cecchini M., et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019;19:56–66. doi: 10.1016/S1473-3099(18)30605-4.

Al Jarousha A.M., El Jadba A.H., Al Afifi A.S., El Qouqa I.A. Nosocomial multidrug-resistant Acinetobacter baumannii in the neonatal intensive care unit in Gaza City, Palestine. Int. J. Infect. Dis. 2009;13:623–628. doi: 10.1016/j.ijid.2008.08.029.

Le Doare K., Barker C.I., Irwin A., Sharland M. Improving antibiotic prescribing for children in the resource-poor setting. Br. J. Clin. Pharmacol. 2015;79:446–455. doi: 10.1111/bcp.12320.

Okomo U., Akpalu E.N.K., Le Doare K., Roca A., Cousens S., Jarde A., Sharland M., Kampmann B., Lawn J.E. Aetiology of invasive bacterial infection and antimicrobial resistance in neonates in sub-Saharan Africa: A systematic review and meta-analysis in line with the STROBE-NI reporting guidelines. Lancet Infect. Dis. 2019;19:1219–1234. doi: 10.1016/S1473-3099(19)30414-1.

Tamma P.D., Newland J.G., Pannaraj P.S., Metjian T.A., Banerjee R., Gerber J.S., Weissman S.J., Beekmann S.E., Polgreen P.M., Hersh A.L. The use of intravenous colistin among children in the United States: Results from a multicenter, case series. Pediatr Infect. Dis. J. 2013;32:17–22. doi: 10.1097/INF.0b013e3182703790.

Naylor N.R., Atun R., Zhu N., Kulasabanathan K., Silva S., Chatterjee A., Knight G.M., Robotham J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control. 2018;7:58. doi: 10.1186/s13756-018-0336-y.

Travers K., Barza M. Morbidity of infections caused by antimicrobial-resistant bacteria. Clin. Infect. Dis. 2002;34:S131–S134. doi: 10.1086/340251.

Meropol S.B., Haupt A.A., Debanne S.M. Incidence and Outcomes of Infections Caused by Multidrug-Resistant Enterobacteriaceae in Children, 2007–2015. J. Pediatric Infect. Dis. Soc. 2018;7:36–45. doi: 10.1093/jpids/piw093.

Barrasa-Villar J.I., Aibar-Remón C., Prieto-Andrés P., Mareca-Doñate R., Moliner-Lahoz J. Impact on Morbidity, Mortality, and Length of Stay of Hospital-Acquired Infections by Resistant Microorganisms. Clin. Infect. Dis. 2017;65:644–652. doi: 10.1093/cid/cix411.

Johnston K.J., Thorpe K.E., Jacob J.T., Murphy D.J. The incremental cost of infections associated with multidrug-resistant organisms in the inpatient hospital setting—A national estimate. Health Serv. Res. 2019;54:782–792. doi: 10.1111/1475-6773.13135.

Mauldin P.D., Salgado C.D., Hansen I.S., Durup D.T., Bosso J.A. Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob. Agents Chemother. 2010;54:109–115. doi: 10.1128/AAC.01041-09.

Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015;40:277–283.

Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010;74:417–433. doi: 10.1128/MMBR.00016-10.

Luyt C.E., Bréchot N., Trouillet J.L., Chastre J. Antibiotic stewardship in the intensive care unit. Crit. Care. 2014;18:480. doi: 10.1186/s13054-014-0480-6.

CDC Report: Antibiotic Resistance Threats in the United States. [(accessed on 5 April 2021)];2013 Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf

Fridkin S.K., Hageman J., McDougal L.K., Mohammed J., Jarvis W.R., Perl T.M., Tenover F.C. Vancomycin-Intermediate Staphylococcus aureus Epidemiology Study Group. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997–2001. Clin. Infect. Dis. 2003;36:429–439. doi: 10.1086/346207.

Long S.W., Olsen R.J., Mehta S.C., Palzkill T., Cernoch P.L., Perez K.K., Musick W.L., Rosato A.E., Musser J.M. PBP2a mutations causing high-level Ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 2014;58:6668–6674. doi: 10.1128/AAC.03622-14.

Eck A., Rutten N.B.M.M., Singendonk M.M.J., Rijkers G.T., Savelkoul P.H.M., Meijssen C.B., Crijns C.E., Oudshoorn J.H., Budding A.E., Vlieger A.M. Neonatal microbiota development and the effect of early life antibiotics are determined by two distinct settler types. PLoS ONE. 2020;15:e0228133. doi: 10.1371/journal.pone.0228133.

Chong C.Y.L., Bloomfield F.H., O’Sullivan J.M. Factors Affecting Gastrointestinal Microbiome Development in Neonates. Nutrients. 2018;10:274. doi: 10.3390/nu10030274.

Goossens H., Ferech M., Vander S.R., Elseviers M. ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet. 2005;365:579–587. doi: 10.1016/S0140-6736(05)17907-0.

Chung A., Perera R., Brueggemann A.B., Elamin A.E., Harnden A., Mayon-White R., Smith S., Crook D.W., Mant D. Effect of antibiotic prescribing on antibiotic resistance in individual children in primary care: Prospective cohort study. BMJ. 2007;335:429. doi: 10.1136/bmj.39274.647465.BE.

Nicolini G., Donà D., Mion T., Barlotta A., Girotto S., Borgia E., Franceschetto G., Scamarcia A., Picelli G., Cantarutti L., et al. Use of amoxicillin, amoxicillin/calvulanate and cefaclor in the Italian pediatric population. J. Pediatr. Infect. Dis. 2013;9:1–9. doi: 10.3233/JPI-140405.

Taylor B., Fergusson D., Abbott G.D. Antibiotics for presumed viral respiratory infections. Br. Med. J. 1977;2:1290–1291. doi: 10.1136/bmj.2.6097.1290-c.

Harnden A., Perera R., Brueggemann A.B., Mayon-White R., Crook D.W., Thomson A., Mant D. Respiratory infections for which general practitioners consider prescribing an antibiotic: A prospective study. Arch. Dis. Child. 2007;92:594–597. doi: 10.1136/adc.2007.116665.

Levy E.R., Swami S., Dubois S.G., Wendt R., Banerjee R. Rates and appropriateness of antimicrobial prescribing at an academic children’s hospital, 2007–2010. Infect. Control. Hosp. Epidemiol. 2012;33:346–353. doi: 10.1086/664761.

Apisarnthanarak A., Bhooanusas N., Yaprasert A., Mundy L.M. Carbapenem de-escalation therapy in a resource-limited setting. Infect. Control. Hosp. Epidemiol. 2013;34:1310–1313. doi: 10.1086/673976.

van den Anker J.N., Schoemaker R.C., Hop W.C., van der Heijden B.J., Weber A., Sauer P.J., Neijens H.J., de Groot R. Ceftazidime pharmacokinetics in preterm infants: Effects of renal function and gestational age. Clin. Pharmacol. Ther. 1995;58:650–659. doi: 10.1016/0009-9236(95)90021-7.

Meibohm B., Läer S., Panetta J.C., Barrett J.S. Population pharmacokinetic studies in pediatrics: Issues in design and analysis. AAPS J. 2005;7:E475–E487. doi: 10.1208/aapsj070248.

Guidance for Industry: General Considerations for Pediatric Pharmacokinetic Studies for Drugs and Biological Products. [(accessed on 5 April 2021)]; Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-clinical-pharmacology-considerations-pediatric-studies-drugs-and-biological-products

Manolis E., Osman T.E., Herold R., Koenig F., Tomasi P., Vamvakas S., Saint R.A. Role of modeling and simulation in pediatric investigation plans. Paediatr. Anaesth. 2011;21:214–221. doi: 10.1111/j.1460-9592.2011.03523.x.

Bouzom F., Walther B. Pharmacokinetic predictions in children by using the physiologically based pharmacokinetic modelling. Fundam. Clin. Pharmacol. 2008;22:579–587. doi: 10.1111/j.1472-8206.2008.00648.x.

Johnson T.N., Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: Parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr. Anaesth. 2011;21:291–301. doi: 10.1111/j.1460-9592.2010.03323.x.

Zhao P., Zhang L., Grillo J.A., Liu Q., Bullock J.M., Moon Y.J., Song P., Brar S.S., Madabushi R., Wu T.C., et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin. Pharmacol. Ther. 2011;89:259–267. doi: 10.1038/clpt.2010.298.

American Academy of Pediatrics Committee on Infectious Diseases The use of systemic fluoroquinolones. Pediatrics. 2006;118:1287–1292. doi: 10.1542/peds.2006-1722.

Bradley J.S., Jackson M.A. Committee on Infectious Diseases, American Academy of Pediatrics. The use of systemic and topical fluoroquinolones. Pediatrics. 2011;128:e1034–e1045. doi: 10.1542/peds.2011-1496.

Jackson M.A., Schutze G.E. Committee on Infectious Diseases. The Use of Systemic and Topical Fluoroquinolones. Pediatrics. 2016;138:e20162706. doi: 10.1542/peds.2016-2706.

Gilman A., Rall T.W., Nies A.S., Taylor P., editors. The Pharmacological Basis of Therapeutics. 8th ed. Pergamon Press; New York, NY, USA: 1990. pp. 1117–1118.

Conchie J.M., Munroe J.D., Anderson D.O. The incidence of staining of permanent teeth by the tetracyclines. Can. Med. Assoc. J. 1970;103:351–356.

Pickering L.K., Baker C.J., Kimberlin D.W., Long S.S. Red Book: 2009 Report of the Committee on Infectious Diseases. 28th ed. American Academy of Pediatrics; Elk Grove Village, IL, USA: 2009. Tetracyclines; p. 739.

Shigeta M., Tanaka G., Komatsuzawa H., Sugai M., Suginaka H., Usui T. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: A simple method. Chemotherapy. 1997;43:340–345. doi: 10.1159/000239587.

Zhang T.C., Bishop P.L. Evaluation of substrate and pH effects in a nitrifying biofilm. Wat. Environ. Res. 1996;68:1107–1115. doi: 10.2175/106143096X128504.

Cochran W.L., Suh S.J., McFeters G.A., Stewart P.S. Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. J. Appl. Microbiol. 2000;88:546–553. doi: 10.1046/j.1365-2672.2000.00995.x.

Torretta S., Drago L., Marchisio P., Ibba T., Pignataro L. Role of Biofilms in Children with Chronic Adenoiditis and Middle Ear Disease. J. Clin. Med. 2019;8:671. doi: 10.3390/jcm8050671.

Zuliani G., Carron M., Gurrola J., Coleman C., Haupert M., Berk R., Coticchia J. Identification of adenoid biofilms in chronic rhinosinusitis. Int. J. Pediatr. Otorhinolaryngol. 2006;70:1613–1617. doi: 10.1016/j.ijporl.2006.05.002.

Perault A.I., Chandler C.E., Rasko D.A., Ernst R.K., Wolfgang M.C., Cotter P.A. Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex. Cell Host Microbe. 2020;28:534–547. doi: 10.1016/j.chom.2020.06.019.

Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. [(accessed on 5 April 2021)]; Available online: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf

Herold B.C., Immergluck L.C., Maranan M.C., Lauderdale D.S., Gaskin R.E., Boyle-Vavra S., Leitch C.D., Daum R.S. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA. 1998;279:593–598. doi: 10.1001/jama.279.8.593.

Sutter D.E., Milburn E., Chukwuma U., Dzialowy N., Maranich A.M., Hospenthal D.R. Changing Susceptibility of Staphylococcus aureus in a US Pediatric Population. Pediatrics. 2016;137:e20153099. doi: 10.1542/peds.2015-3099.

McNeil J.C., Hulten K.G., Kaplan S.L., Mason E.O. Mupirocin resistance in Staphylococcus aureus causing recurrent skin and soft tissue infections in children. Antimicrob. Agents Chemother. 2011;55:2431–2433. doi: 10.1128/AAC.01587-10.

Hiramatsu K., Hanaki H., Ino T., Yabuta K., Oguri T., Tenover F.C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 1997;40:135–136. doi: 10.1093/jac/40.1.135.

Long S.S., Prober C.G., Fischer M., editors. Principles and Practice of Pediatric Infectious Diseases. 5th ed. Elsevier Saunders; Philadelphia, PA, USA: 2017. pp. 692–706. Staphylococcus aureus.

Pani A., Colombo F., Agnelli F., Frantellizzi V., Baratta F., Pastori D., Scaglione F. Off-label use of ceftaroline fosamil: A systematic review. Int. J. Antimicrob. Agents. 2019;54:562–571. doi: 10.1016/j.ijantimicag.2019.06.025.

Dortet L., Poirel L., Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int. 2014;2014:249856. doi: 10.1155/2014/249856.

Zerr D.M., Miles-Jay A., Kronman M.P., Zhou C., Adler A.L., Haaland W., Weissman S.J., Elward A., Newland J.G., Zaoutis T. Previous Antibiotic Exposure Increases Risk of Infection with Extended-Spectrum-β-Lactamase- and AmpC-Producing Escherichia coli and Klebsiella pneumoniae in Pediatric Patients. Antimicrob. Agents Chemother. 2016;60:4237–4243. doi: 10.1128/AAC.00187-16.

Zerr D.M., Weissman S.J., Zhou C., Kronman M.P., Adler A.L., Berry J.E., Rayar J., Myers J., Haaland W.L., Burnham C.D., et al. The Molecular and Clinical Epidemiology of Extended-Spectrum Cephalosporin- and Carbapenem-Resistant Enterobacteriaceae at 4 US Pediatric Hospitals. J. Pediatric. Infect. Dis. Soc. 2017;6:366–375. doi: 10.1093/jpids/piw076.

Topaloglu R., Er I., Dogan B.G., Bilginer Y., Ozaltin F., Besbas N., Ozen S., Bakkaloglu A., Gur D. Risk factors in community-acquired urinary tract infections caused by ESBL-producing bacteria in children. Pediatr. Nephrol. 2010;25:919–925. doi: 10.1007/s00467-009-1431-3.

Logan L.K., Renschler J.P., Gandra S., Weinstein R.A., Laxminarayan R. Centers for Disease Control; Prevention Epicenters Program. Carbapenem-Resistant Enterobacteriaceae in Children, United States, 1999–2012. Emerg. Infect. Dis. 2015;21:2014–2021. doi: 10.3201/eid2111.150548.

Hsu A.J., Tamma P.D. Treatment of multidrug-resistant Gram-negative infections in children. Clin. Infect. Dis. 2014;58:1439–1448. doi: 10.1093/cid/ciu069.

Paterson D.L. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Med. 2006;119:S20–S70. doi: 10.1016/j.amjmed.2006.03.013.

Lee C.Y., Chen P.Y., Huang F.L., Lin C.F. Microbiologic spectrum and susceptibility pattern of clinical isolates from the pediatric intensive care unit in a single medical center-6 years’ experience. J. Microbiol. Immunol. Infect. 2009;42:160–165.

Koch-Weser J., Sidel V.W., Federman E.B., Kanarek P., Finer D.C., Eaton A.E. Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann. Intern. Med. 1970;72:857–868. doi: 10.7326/0003-4819-72-6-857.

Sarkar S., DeSantis E.R., Kuper J. Resurgence of colistin use. Am. J. Health Syst. Pharm. 2007;64:2462–2466. doi: 10.2146/ajhp060501.

Liu Y.Y., Wang Y., Walsh T.R., Yi L.X., Zhang R., Spencer J., Doi Y., Tian G., Dong B., Huang X., et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016;16:161–168. doi: 10.1016/S1473-3099(15)00424-7.

Society for Healthcare Epidemiology of America. Infectious Diseases Society of America. Pediatric Infectious Diseases Society Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS) Infect. Control. Hosp. Epidemiol. 2012;33:322–327. doi: 10.1086/665010.

EMA: Guideline on the Role of Pharmacokinetics on the Development of Medicinal Products for the Paediatric Population. [(accessed on 5 April 2021)]; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-role-pharmacokinetics-development-medicinal-products-paediatric-population_en.pdf

Ellington M.J., Ekelund O., Aarestrup F.M., Canton R., Doumith M., Giske C., Grundman H., Hasman H., Holden M.T.G., Hopkins K.L., et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol Infect. 2017;23:2–22. doi: 10.1016/j.cmi.2016.11.012.

US Food and Drug Administration Clinical Review. [(accessed on 22 March 2021)]; Available online: https://www.fda.gov/files/drugs/published/N200327S0160—17-Ceftaroline-fosamil-Clinical-PREA.pdf

European Medicines Agency Ceftaroline Fosamil. [(accessed on 22 March 2021)]; Available online: https://www.ema.europa.eu/en/documents/product-information/zinforo-epar-product-information_en.pdf

NDA Multi-Disciplinary Review and Evaluation–NDA 206494 Supplements 005 and 006 AVYCAZ (ceftazidime/avibactam) for injection. [(accessed on 22 March 2021)]; Available online: https://www.fda.gov/media/124307/download

Larson K.B., Patel Y.T., Willavize S., Bradley J.S., Rhee E.G., Caro L., Matthew L., Rizk M.L. Ceftolozane-Tazobactam Population Pharmacokinetics and Dose Selection for Further Clinical Evaluation in Pediatric Patients with Complicated Urinary Tract or Complicated Intra-abdominal Infections. Antimicrob. Agents Chemother. 2019;63:e02578-e18. doi: 10.1128/AAC.02578-18.

Roch M., Varela M.C., Taglialegna A., Rosato A.E. Tedizolid is a promising antimicrobial option for the treatment of Staphylococcus aureus infections in cystic fibrosis patients. J. Antimicrob. Chemother. 2020;75:126–134. doi: 10.1093/jac/dkz418.

Gonzalez D., Bradley J.S., Blumer J., Yogev R., Watt K.M., James L.P., Palazzi D.L., Bhatt-Mehta V., Sullivan J.E., Zhang L., et al. Dalbavancin Pharmacokinetics and Safety in Children 3 Months to 11 Years of Age. Pediatr. Infect. Dis. J. 2017;36:645–653. doi: 10.1097/INF.0000000000001538.

Downloads

Published

2025-04-01

How to Cite

1.
Naagar M, Gupta T, Loona N, Goel K, Kumar Maity M. Current Scenario and Various Mechanisms of Antibiotic Resistance in Pediatric Infections – A Narrative Review. J Neonatal Surg [Internet]. 2025Apr.1 [cited 2025Oct.5];14(10S):469-78. Available from: https://jneonatalsurg.com/index.php/jns/article/view/2859