Current Scenario and Various Mechanisms of Antimicrobial Resistance in Neisseria gonorrhoeae – A Comprehensive Review

Authors

  • Mamta Naagar
  • Nishtha Loona
  • Tanishq Gupta
  • Karan Goel
  • Manish Kumar Maity

DOI:

https://doi.org/10.52783/jns.v14.2892

Abstract

Neisseria gonorrhoeae is turning into a superbug that is resistant to previously and presently prescribed antimicrobials for gonorrhoea therapy, which is becoming a serious problem to public health worldwide. Given the gonorrhea’s global nature, use of antimicrobials at high rate, suboptimal control and AMR monitoring & failures in treatment, update of guidelines at slow pace in geographical settings, and capacity of gonococci bacterium to develop and retain AMR, the global problem of AMR in gonococcal bacteria is likely to worsen in the foreseeable future, and its severe complications will emerge as a silent killer. Resistance to antimicrobials used in clinical practice can be predicted by studying the evolution, emergence, and AMR spread in N. gonorrhoeae, including its mechanisms (molecular and phenotypic); upcoming methods for genetic testing of AMR may allow region-specific as well as tailor-made antimicrobial therapy. Besides, the design to circumvent resistance problems can be undertaken more rationally. This review focuses on the gonorrhea’s history, its treatment evolution, and emergence of its resistance; determinants of gonococcal resistance to previous and now recommended antimicrobials, along with biological costs and benefits; intensive actions and advances in near future required to detect and manage resistant gonococcal strains and therefore, keeping gonorrhoea as a preventable infection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

World Health Organization (WHO). 2012. Global incidence and prevalence of selected curable sexually transmitted infections—2008. World Health Organization, Geneva, Switzerland.

Cámara J, Serra J, Ayats J, Bastida T, Carnicer-Pont D, Andreu A, Ardanuy C. 2012. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J. Antimicrob. Chemother. 67:1858–1860. 10.1093/jac/dks162.

Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, Nakayama S, Kitawaki J, Unemo M. 2011. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother. 55:3538–3545. 10.1128/AAC.00325-11.

Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. 2012. High-level cefixime- and ceftriaxone-resistant N. gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother. 56:1273–1280. 10.1128/AAC.05760-11.

Unemo M, Nicholas RA. 2012. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol. 7:1401–1422. 10.2217/fmb.12.117.

Bolan GA, Sparling PF, Wasserheit JN. 2012. The emerging threat of untreatable gonococcal infection. N. Engl. J. Med. 366:485–487. 10.1056/NEJMp1112456.

Ison CA. 2012. Antimicrobial resistance in sexually transmitted infections in the developed world: implications for rational treatment. Curr. Opin. Infect. Dis. 25:73–78. 10.1097/QCO.0b013e32834e9a6a.

Unemo M, Shafer WM. 2011. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann. N. Y. Acad. Sci. 1230:E19–E28. 10.1111/j.1749-6632.2011.06215.x

Whiley DM, Goire N, Lahra MM, Donovan B, Limnios AE, Nissen MD, Sloots TP. 2012. The ticking time bomb: escalating antibiotic resistance in Neisseria gonorrhoeae is a public health disaster in waiting. J. Antimicrob. Chemother. 67:2059–2061. 10.1093/jac/dks188.

Groopman J. 1 October 2012. Sex and the superbug—the rise of drug-resistant gonorrhea. New Yorker 2012:26–30.

Centers for Disease Control and Prevention (CDC). 2012. Cephalosporin-resistant Neisseria gonorrhoeae public health response plan, p 1–43 CDC, Atlanta, GA.

European Centre for Disease Prevention and Control (ECDC). 2012. Response plan to control and manage the threat of multidrug-resistant gonorrhoea in Europe, p 1–23 ECDC, Stockholm, Sweden.

Ndowa F, Lusti-Narasimhan M, Unemo M. 2012. The serious threat of multidrug-resistant and untreatable gonorrhoea: the pressing need for global action to control the spread of antimicrobial resistance, and mitigate the impact on sexual and reproductive health. Sex. Transm. Infect. 88:317–318. 10.1136/sextrans-2012-050674.

World Health Organization (WHO), Department of Reproductive Health and Research. 2012. Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae, p 1–36 WHO, Geneva, Switzerland.

Centers for Disease Control and Prevention (CDC). 2012. Update to CDC's sexually transmitted diseases treatment guidelines, 2010: oral cephalosporins no longer a recommended treatment for gonococcal infections. MMWR Morb. Mortal. Wkly. Rep. 61:590–594.

Bignell C, Fitzgerald M. 2011. UK national guideline for the management of gonorrhoea in adults, 2011. Int. J. STD AIDS 22:541–547. 10.1258/ijsa.2011.011267.

Bignell C, Unemo M. 2013. 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults. Int. J. STD AIDS 24:85–92. 10.1177/0956462412472837.

Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR, Daly CC, Zimba D, Vernazza PL, Maida M, Fiscus SA, Eron JJ., Jr 1997. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. Lancet 349:1868–1873. 10.1016/S0140-6736(97)02190-9.

Tapsall JW, Ndowa F, Lewis DA, Unemo M. 2009. Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev. Anti Infect. Ther. 7:821–834. 10.1586/eri.09.63.

Unemo M, Ison C. 2013. Gonorrhoea, p 21–54 In Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus. World Health Organization (WHO), Geneva, Switzerland.

Katz AR, Effler PV, Ohye RG, Brouillet B, Lee MV, Whiticar PM. 2004. False-positive gonorrhea test results with a nucleic acid amplification test: the impact of low prevalence on positive predictive value. Clin. Infect. Dis. 38:814–819. 10.1086/381895.

Palmer HM, Mallinson H, Wood RL, Herring AJ. 2003. Evaluation of the specificities of five DNA amplification methods for the detection of Neisseria gonorrhoeae. J. Clin. Microbiol. 41:835–837. 10.1128/JCM.41.2.835-837.2003.

. Tabrizi SN, Unemo M, Limnios AE, Hogan TR, Hjelmevoll SO, Garland SM, Tapsall J. 2011. Evaluation of six commercial nucleic acid amplification tests for detection of Neisseria gonorrhoeae and other Neisseria species. J. Clin. Microbiol. 49:3610–3615. 10.1128/JCM.01217-11.

Whiley DM, Tapsall JW, Sloots TP. 2006. Nucleic acid amplification testing for Neisseria gonorrhoeae: an ongoing challenge. J. Mol. Diagn. 8:3–15. 10.2353/jmoldx.2006.050045.

Smith DW, Tapsall JW, Lum G. 2005. Guidelines for the use and interpretation of nucleic acid detection tests for Neisseria gonorrhoeae in Australia: a position paper on behalf of the Public Health Laboratory Network. Commun. Dis. Intell. 29:358–365.

Goire N, Sloots TP, Nissen MD, Whiley DM. 2012. Protocol for the molecular detection of antibiotic resistance mechanisms in Neisseria gonorrhoeae. Methods Mol. Biol. 903:319–328. 10.1007/978-1-61779-937-2_22.

Low N, Unemo M, Jensen JS, Breuer J, Stephenson JM. 2014. Molecular diagnostics for gonorrhoea: implications for antimicrobial resistance and the threat of untreatable gonorrhoea. PLoS Med. 11:e1001598. 10.1371/journal.pmed.1001598.

Sadiq ST, Dave J, Butcher PD. 2010. Point-of-care antibiotic susceptibility testing for gonorrhoea: improving therapeutic options and sparing the use of cephalosporins. Sex. Transm. Infect. 86:445–446. 10.1136/sti.2010.044230.

Dillon JAR, Li H, Yeung K, Aman TA. 1999. A PCR assay for discriminating Neisseria gonorrhoeae beta-lactamase-producing plasmids. Mol. Cell. Probes 13:89–92. 10.1006/mcpr.1998.0216.

Palmer HM, Leeming LP, Turner A. 2000. A multiplex polymerase chain reaction to differentiate β-lactamase plasmids of Neisseria gonorrhoeae. J. Antimicrob. Chemother. 45:777–782. 10.1093/jac/45.6.777.

Goire N, Freeman K, Tapsall JW, Lambert SB, Nissen MD, Sloots TP, Whiley DM. 2011. Enhancing gonococcal antimicrobial resistance surveillance: a real-time PCR assay for detection of penicillinase-producing Neisseria gonorrhoeae by use of noncultured clinical samples. J. Clin. Microbiol. 49:513–518. 10.1128/JCM.02024-10.

Kugelman G, Tapsall JW, Goire N, Syrmis MW, Limnios A, Lambert SB, Nissen MD, Sloots TP, Whiley DM. 2009. Simple, rapid, and inexpensive detection of Neisseria gonorrhoeae resistance mechanisms using heat-denatured isolates and SYBR green-based real-time PCR. Antimicrob. Agents Chemother. 53:4211–4216. 10.1128/AAC.00385-09.

Vernel-Pauillac F, Merien F. 2006. A novel real-time duplex PCR assay for detecting penA and ponA genotypes in Neisseria gonorrhoeae: comparison with phenotypes determined by the E-test. Clin. Chem. 52:2294–2296. 10.1373/clinchem.2006.075309.

Vernel-Pauillac F, Nandi S, Nicholas RA, Goarant C. 2008. Genotyping as a tool for antibiotic resistance surveillance of Neisseria gonorrhoeae in New Caledonia: evidence of a novel genotype associated with reduced penicillin susceptibility. Antimicrob. Agents Chemother. 52:3293–3300. 10.1128/AAC.00020-08.

Vernel-Pauillac F, Falcot V, Whiley D, Merien F. 2006. Rapid detection of a chromosomally mediated penicillin resistance-associated ponA mutation in Neisseria gonorrhoeae using a real-time PCR assay. FEMS Microbiol. Lett. 255:66–74. 10.1111/j.1574-6968.2005.00053.x.

Starnino S, Neri A, Stefanelli P, Neisseria gonorrhoeae Italian Study Group 2008. Molecular analysis of tetracycline-resistant gonococci: rapid detection of resistant genotypes using a real-time PCR assay. FEMS Microbiol. Lett. 286:16–23. 10.1111/j.1574-6968.2008.01244.x.

Chisholm SA, Dave J, Ison CA. 2010. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. Antimicrob. Agents Chemother. 54:3812–3816. 10.1128/AAC.00309-10.

Galarza PG, Abad R, Canigia LF, Buscemi L, Pagano I, Oviedo C, Vázquez JA. 2010. New mutation in 23S rRNA gene associated with high level of azithromycin resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 54:1652–1653. 10.1128/AAC.01506-09.

Katz AR, Komeya AY, Soge OO, Kiaha MI, Lee MV, Wasserman GM, Maningas EV, Whelen AC, Kirkcaldy RD, Shapiro SJ, Bolan GA, Holmes KK. 2012. Neisseria gonorrhoeae with high-level resistance to azithromycin: case report of the first isolate identified in the United States. Clin. Infect. Dis. 54:841–843. 10.1093/cid/cir929.

Ng LK, Martin I, Liu G, Bryden L. 2002. Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 46:3020–3025. 10.1128/AAC.46.9.3020-3025.2002.

Roberts MC, Chung WO, Roe D, Xia M, Marquez C, Borthagaray G, Whittington WL, Holmes KK. 1999. Erythromycin-resistant Neisseria gonorrhoeae and oral commensal Neisseria spp. carry known rRNA methylase genes. Antimicrob. Agents Chemother. 43:1367–1372.

Unemo M, Golparian D, Hellmark B. 2014. First three Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Sweden: a threat to currently available dual-antimicrobial regimens for treatment of gonorrhea? Antimicrob. Agents Chemother. 58:624–625. 10.1128/AAC.02093-13.

Booth SA, Drebot MA, Martin IE, Ng LK. 2003. Design of oligonucleotide arrays to detect point mutations: molecular typing of antibiotic resistant strains of Neisseria gonorrhoeae and hantavirus infected deer mice. Mol. Cell. Probes 17:77–84. 10.1016/S0890-8508(03)00005-7.

Li Z, Yokoi S, Kawamura Y, Maeda S, Ezaki T, Deguchi T. 2002. Rapid detection of quinolone resistance-associated gyrA mutations in Neisseria gonorrhoeae with a LightCycler. J. Infect. Chemother. 8:145–150. 10.1007/s101560200025.

Lindbäck E, Unemo M, Akhras M, Gharizadeh B, Fredlund H, Pourmand N, Wretlind B. 2006. Pyrosequencing of the DNA gyrase gene in Neisseria species: effective indicator of ciprofloxacin resistance in Neisseria gonorrhoeae. APMIS 114:837–841. 10.1111/j.1600-0463.2006.apm_495.x

Magooa MP, Muller EE, Gumede L, Lewis DA. 2013. Determination of Neisseria gonorrhoeae susceptibility to ciprofloxacin in clinical specimens from men using a real-time PCR assay. Int. J. Antimicrob. Agents 42:63–67. 10.1016/j.ijantimicag.2013.02.026.

Siedner MJ, Pandori M, Castro L, Barry P, Whittington WL, Liska S, Klausner JD. 2007. Real-time PCR assay for detection of quinolone-resistant Neisseria gonorrhoeae in urine samples. J. Clin. Microbiol. 45:1250–1254. 10.1128/JCM.01909-06.

Siedner MJ, Pandori M, Leon SR, Barry PM, Espinosa BJ, Hall ER, Coates TJ, Klausner JD. 2008. Detection of quinolone-resistant Neisseria gonorrhoeae in urogenital specimens with the use of real-time polymerase chain reaction. Int. J. STD AIDS 19:69–71. 10.1258/ijsa.2007.007206.

Vernel-Pauillac F, Hogan TR, Tapsall JW, Goarant C. 2009. Quinolone resistance in Neisseria gonorrhoeae: rapid genotyping of quinolone resistance-determining regions in gyrA and parC genes by melting curve analysis predicts susceptibility. Antimicrob. Agents Chemother. 53:1264–1267. 10.1128/AAC.01104-08.

Ochiai S, Ishiko H, Yasuda M, Deguchi T. 2008. Rapid detection of the mosaic structure of the Neisseria gonorrhoeae penA gene, which is associated with decreased susceptibilities to oral cephalosporins. J. Clin. Microbiol. 46:1804–1810. 10.1128/JCM.01800-07.

Pandori M, Barry PM, Wu A, Ren A, Whittington WL, Liska S, Klausner JD. 2009. Mosaic penicillin-binding protein 2 in Neisseria gonorrhoeae isolates collected in 2008 in San Francisco, California. Antimicrob. Agents Chemother. 53:4032–4034. 10.1128/AAC.00406-09.

Unemo M, Olcén P, Fredlund H, Thulin S. 2008. Real-time PCR and subsequent pyrosequencing for screening of penA mosaic alleles and prediction of reduced susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae. APMIS 116:1004–1008. 10.1111/j.1600-0463.2008.01062.x

Whiley SM, Bates J, Limnios A, Nissen MD, Tapsall J, Sloots TP. 2007. Use of a novel screening PCR indicates presence of Neisseria gonorrhoeae with a mosaic penA gene sequence in Australia. Pathology 39:445–446. 10.1080/00313020701444515.

Balashov S, Mordechai E, Adelson ME, Gygax SE. 2013. Multiplex bead suspension array for screening Neisseria gonorrhoeae antibiotic resistance genetic determinants in noncultured clinical samples. J. Mol. Diagn. 15:116–129. 10.1016/j.jmoldx.2012.08.005.

Ilina EN, Vereshchagin VA, Borovskaya AD, Malakhova MV, Sidorenko SV, Al-Khafaji NC, Kubanova AA, Govorun VM. 2008. Relation between genetic markers of drug resistance and susceptibility profile of clinical Neisseria gonorrhoeae strains. Antimicrob. Agents Chemother. 52:2175–2182. 10.1128/AAC.01420-07.

Lawung R, Cherdtrakulkiat R, Charoenwatanachokchai A, Nabu S, Suksaluk W, Prachayasittikul V. 2009. One-step PCR for the identification of multiple antimicrobial resistance in Neisseria gonorrhoeae. J. Microbiol. Methods 77:323–325. 10.1016/j.mimet.2009.03.009.

Goire N, Ohnishi M, Limnios AE, Lahra MM, Lambert SB, Nimmo GR, Nissen MD, Sloots TP, Whiley DM. 2012. Enhanced gonococcal antimicrobial surveillance in the era of ceftriaxone resistance: a real-time PCR assay for direct detection of the Neisseria gonorrhoeae H041 strain. J. Antimicrob. Chemother. 67:902–905. 10.1093/jac/dkr549.

Goire N, Lahra MM, Ohnishi M, Hogan T, Liminios AE, Nissen MD, Sloots TP, Whiley DM. 2013. Polymerase chain reaction-based screening for the ceftriaxone-resistant Neisseria gonorrhoeae F89 strain. Euro Surveill. 18:20444 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20444.

Oriel JD. 1994. The scars of Venus: a history of venereology. Springer-Verlag, London, United Kingdom.

Milton JL. 1884. On the pathology and treatment of gonorrhoea, p 73–82 W Wood & Co, New York, NY.

Bumstead FJ. 1864. The pathology and treatment of venereal diseases, revised ed, p 89–96 Blanchard & Lea, Philadelphia, PA.

Dunglison RJ. 1874. A dictionary of medical science, revised ed, p 466 HC Lea, Philadelphia, PA.

Lewis DA. 2010. The gonococcus fights back: is this time a knock out? Sex. Transm. Infect. 86:415–421. 10.1136/sti.2010.042648.

Young HH, Hill JH, Scott WW. 1925. The treatment of infections and infectious diseases with Mercurochrome-220 soluble. Arch. Surg. 10:885–924.

Redewill FH, Potter JE, Garrison HA. 1926. Mercurochrome 220-soluble and sugar in the treatment of 1200 cases of gonorrhea urethritis and complications (with animal experimentation). J. Urol. 16:397–410.

Young HH, Colston JA, Hill JS. 1932. Infections in the genito-urinary tract, and complications. JAMA 98:715–722. 10.1001/jama.1932.02730350029007.

Cumberbatch EP, Robinson CA. 1923. Treatment of gonococcal infection with diathermy. Br. Med. J. 2:54–56. 10.1136/bmj.2.3263.54.

Warren SL, Wilson KM. 1932. The treatment of gonorrheal infections by artificial (general) hyperthermia. Am. J. Obstet. Gynecol. 24:592–598.

Desjardins AU, Stuhler LG, Popp WC. 1935. Fever therapy for gonococcic infections. JAMA 104:873–878. 10.1001/jama.1935.02760110001001.

Hench PS, Slocumb CH, Popp WC. 1935. Fever therapy. Results for gonorrhea arthritis, chronic infectious (atrophic) arthritis and other forms of “rheumatism.” JAMA 104:1779–1790.

Potter JE, Redewill FH, Longley EG. 1937. Hyperpyrexia as an adjunct in the treatment of nonsurgical urologic conditions. J. Urol. 37:214–225.

Bierman W, Levenson CL. 1936. The treatment of gonorrhea arthritis by means of systemic and additional focal heating. Am. J. Med. Sci. 191:55–65. 10.1097/00000441-193601000-00006.

Simmons EE. 1937. Value of fever therapy in the arthritides. Am. J. Med. Sci. 194:170–178. 10.1097/00000441-193708000-00003.

Cokkinis AJ, McElligott GL. 1938. Sulfanilamide in gonorrhea. An analysis of 633 cases. Lancet ii:355–362.

Kampmeier RH. 1983. Introduction of sulfonamide therapy for gonorrhea. Sex. Transm. Dis. 10:81–84. 10.1097/00007435-198304000-00007.

Van Slyke CJ, Wolcott RR, Mahoney JF. 1941. The chemotherapy of gonococcal infections. JAMA 116:276–280. 10.1001/jama.1941.02820040010004.

Uhle CA, Latowsky LW, Knight F. 1941. Gonorrhea urethritis in the male. Treatment with sulfapyridine and sulfathiazole. JAMA 117:247–249.

Mahoney JF, Van Slyke CJ, Wolcott RR. 1941. Sulfathiazole treatment of gonococcal infections in men and women. Results in 360 patients. Vener. Dis. Inf. 22:425–431.

Dunlop EMC. 1949. Gonorrhoea and the sulphonamides. Br. J. Vener. Dis. 25:81–83.

Lawrence A, Phillips I, Nicol C. 1973. Various regimens of trimethoprim-sulfamethoxazole used in the treatment of gonorrhea. J. Infect. Dis. 128(Suppl):673–678.

Tapsall JW. 2001. Antibiotic resistance in Neisseria gonorrhoeae. WHO document WHO/CDS/DRS/2001.3. World Health Organization, Geneva, Switzerland.

Wainwright M, Swan HT. 1986. C.G. Paine and the earliest surviving clinical records of penicillin therapy. Med. Hist. 30:42–56.

Mahoney JF, Ferguson C, Buchholtz M, van Slyke CJ. 1943. The use of penicillin sodium in the treatment of sulfonamide-resistant gonorrhea in men. A preliminary report. Am. J. Gonorr. Vener. Dis. 27:525–528.

Sternberg TH, Turner TB. 1944. The treatment of sulfonamide resistant gonorrhea with penicillin sodium. Results in 1686 cases. JAMA 126:157–163.

Van Slyke CJ, Arnold RC, Buchholtz M. 1943. Penicillin therapy in sulfonamide-resistant gonorrhea in men. Am. J. Public Health Nations Health 33:1392–1394. 10.2105/AJPH.33.12.1392.

Jaffe HW, Biddle JW, Thornsberry C, Johnson RE, Kaufman RE, Reynolds GH, Wiesner PJ. 1976. National gonorrhea therapy monitoring study: in vitro antibiotic susceptibility and its correlation with treatment results. N. Engl. J. Med. 294:5–9. 10.1056/NEJM197601012940102.

Martin JE, Jr, Lester A, Price EV, Schmale JD. 1970. Comparative study of gonococcal susceptibility to penicillin in the United States, 1955–1969. J. Infect. Dis. 122:459–461. 10.1093/infdis/122.5.459.

Reyn A, Korner B, Bentzon MW. 1958. Effects of penicillin, streptomycin, and tetracycline on N. gonorrhoeae isolated in 1944 and in 1957. Br. J. Vener. Dis. 34:227–239.

Shafer WM, Folster JP, Nicholas RA. 2010. Molecular mechanisms of antibiotic resistance expressed by the pathogenic Neisseria, p 245–268 In Genco C, Wetzler L. (ed), Neisseria—molecular mechanisms of pathogenic Neisseria. Caister Academic Press, Norfolk, United Kingdom.

Amies CR. 1967. Development of resistance of gonococci to penicillin. An eight-year study. Can. Med. Assoc. J. 96:33–35.

Franks AG. 1946. Successful combined treatment of penicillin-resistant gonorrhea. Am. J. Med. Sci. 211:553–555.

Willcox RR. 1970. A survey of problems in the antibiotic treatment of gonorrhoea. With special reference to South-East Asia. Br. J. Vener. Dis. 46:217–242.

Ashford WA, Golash RG, Henning VG. 1976. Penicillinase producing Neisseria gonorrhoeae. Lancet ii:657–658.

Percival A, Rowlands J, Corkill JE, Alergant CD, Arya OP, Rees E, Annels AE. 1976. Penicillinase-producing gonococci in Liverpool. Lancet ii:1379–1382.

Phillips I. 1976. Beta-lactamase producing penicillin-resistant gonococcus. Lancet ii:656–657.

Faruki H, Kohmescher RN, McKinney WP, Sparling PF. 1985. A community-based outbreak of infection with penicillin-resistant Neisseria gonorrhoeae not producing penicillinase (chromosomally mediated resistance). N. Engl. J. Med. 313:607–611. 10.1056/NEJM198509053131004.

Faruki H, Sparling PF. 1986. Genetics of resistance in a non-beta-lactamase-producing gonococcus with relatively high-level penicillin resistance. Antimicrob. Agents Chemother. 30:856–860. 10.1128/AAC.30.6.856.

Bala M, Kakran M, Singh V, Sood S, Ramesh V, Members of WHO GASP SEAR Network 2013. Monitoring antimicrobial resistance in Neisseria gonorrhoeae in selected countries of the WHO South-East Asia Region between 2009 and 2012: a retrospective analysis. Sex. Transm. Infect. 89(Suppl 4):iv28–iv35. 10.1136/sextrans-2012-050904.

Dillon JA, Trecker MA, Thakur SD, Gonococcal Antimicrobial Surveillance Program Network in Latin America and the Caribbean 1990–2011 2013. Two decades of the gonococcal antimicrobial surveillance program in South America and the Caribbean: challenges and opportunities. Sex. Transm. Infect. 89(Suppl 4):iv36–iv41. 10.1136/sextrans-2012-050905.

Kirkcaldy RD, Kidd S, Weinstock HS, Papp JR, Bolan GA. 2013. Trends in antimicrobial resistance in Neisseria gonorrhoeae in the U.S.A.: the Gonococcal Isolate Surveillance Project (GISP), January 2006-June 2012. Sex. Transm. Infect. 89(Suppl 4):iv5–iv10. 10.1136/sextrans-2013-051162.

Kubanova A, Frigo N, Kubanov A, Sidorenko S, Priputnevich T, Vachnina T, Al-Khafaji N, Polevshikova S, Solomka V, Domeika M, Unemo M. 2008. National surveillance of antimicrobial susceptibility in Neisseria gonorrhoeae in 2005–2006 and recommendations of first-line antimicrobial drugs for gonorrhoea treatment in Russia. Sex. Transm. Infect. 84:285–289. 10.1136/sti.2007.029033.

Lahra MM, Lo YR, Whiley DM. 2013. Gonococcal antimicrobial resistance in the Western Pacific Region. Sex. Transm. Infect. 89(Suppl 4):iv19–iv23. 10.1136/sextrans-2012-050906.

Martin IM, Hoffmann S, Ison CA, ESSTI Network 2006. European Surveillance of Sexually Transmitted Infections (ESSTI): the first combined antimicrobial susceptibility data for Neisseria gonorrhoeae in Western Europe. J. Antimicrob. Chemother. 58:587–593. 10.1093/jac/dkl265.

Ndowa FJ, Francis JM, Machiha A, Faye-Kette H, Fonkoua MC. 2013. Gonococcal antimicrobial resistance: perspectives from the African region. Sex. Transm. Infect. 89(Suppl 4):iv11–iv15. 10.1136/sextrans-2012-050907.

Spiteri G, Cole M, Unemo M, Hoffmann S, Ison C, van de Laar M. 2013. The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP)–a sentinel approach in the European Union (EU)/European Economic Area (EEA). Sex. Transm. Infect. 89(Suppl 4):iv16–iv18. 10.1136/sextrans-2013-051117.

Unemo M, Ison CA, Cole M, Spiteri G, van de Laar M, Khotenashvili L. 2013. Gonorrhoea and gonococcal antimicrobial resistance surveillance networks in the WHO European Region, including the independent countries of the former Soviet Union. Sex. Transm. Infect. 89(Suppl 4):iv42–iv46. 10.1136/sextrans-2012-050909.

Morse SA, Johnson SR, Biddle JW, Roberts MC. 1986. High-level tetracycline resistance in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM determinant. Antimicrob. Agents Chemother. 30:664–670. 10.1128/AAC.30.5.664.

Roberts MC, Wagenvoort JH, van Klingeren B, Knapp JS. 1988. tetM- and beta-lactamase containing Neisseria gonorrhoeae (tetracycline resistant and penicillinase producing) in the Netherlands. Antimicrob. Agents Chemother. 32:158. 10.1128/AAC.32.1.158.

Easmon CS, Forster GE, Walker GD, Ison CA, Harris JR, Munday PE. 1984. Spectinomycin as initial treatment for gonorrhoea. Br. Med. J. 289:1032–1034. 10.1136/bmj.289.6451.1032.

Judson FN, Ehret JM, Handsfield HH. 1985. Comparative study of ceftriaxone and spectinomycin for treatment of pharyngeal and anorectal gonorrhea. JAMA 253:1417–1419. 10.1001/jama.1985.03350340069019.

Stolz E, Zwart HG, Michel MF. 1975. Activity of eight antimicrobial agents in vitro against N. gonorrhoeae. Br. J. Vener. Dis. 51:257–264.

Ashford WA, Potts DW, Adams HJ, English JC, Johnson SR, Biddle JW, Thornsberry C, Jaffe HW. 1981. Spectinomycin-resistant penicillinase producing Neisseria gonorrhoeae. Lancet ii:1035–1037.

Boslego JW, Tramont EC, Takafuji ET, Diniega BM, Mitchell BS, Small JW, Khan WN, Stein DC. 1987. Effect of spectinomycin use on the prevalence of spectinomycin-resistant and penicillinase-producing Neisseria gonorrhoeae. N. Engl. J. Med. 317:272–278. 10.1056/NEJM198707303170504.

Ison CA, Littleton K, Shannon KP, Easmon CS, Phillips I. 1983. Spectinomycin resistant gonococci. Br. Med. J. (Clin. Res. Ed.) 287:1827–1829. 10.1136/bmj.287.6408.1827.

Lindberg M, Ringertz O, Sandström E. 1982. Treatment of pharyngeal gonorrhoea due to β-lactamase-producing gonococci. Br. J. Vener. Dis. 58:101–104.

Moran JS. 1995. Treating uncomplicated Neisseria gonorrhoeae infections: is the anatomic site of infection important? Sex. Transm. Dis. 22:39–47. 10.1097/00007435-199501000-00007.

Moran JS, Levine WC. 1995. Drugs of choice for the treatment of uncomplicated gonococcal infections. Clin. Infect. Dis. 20(Suppl 1):S47–S65. 10.1093/clinids/20.Supplement_1.S47.

Gransden WR, Warren CA, Phillips I, Hodges M, Barlow D. 1990. Decreased susceptibility of Neisseria gonorrhoeae to ciprofloxacin. Lancet 335:51. 10.1016/0140-6736(90)90177-7.

Tanaka M, Nakayama H, Haraoka M, Saika T. 2000. Antimicrobial resistance of Neisseria gonorrhoeae and high prevalence of ciprofloxacin-resistant isolates in Japan, 1993 to 1998. J. Clin. Microbiol. 38:521–525.

120. Tanaka M, Kumazawa J, Matsumoto T, Kobayashi I. 1994. High prevalence of Neisseria gonorrhoeae strains with reduced susceptibility to fluoroquinolones in Japan. Genitourin. Med. 70:90–93.

Berglund T, Unemo M, Olcén P, Giesecke J, Fredlund H. 2002. One year of Neisseria gonorrhoeae isolates in Sweden: the prevalence study of antibiotic susceptibility shows relation to the geographic area of exposure. Int. J. STD AIDS 13:109–114. 10.1258/0956462021924730.

Patrick D, Shaw C, Rekart ML. 1995. Neisseria gonorrhoeae with decreased susceptibility to ciprofloxacin in British Columbia: an imported phenomenon. Can. Common Dis. Rep. 21:137–139.

Su X, Lind I. 2001. Molecular basis of high-level ciprofloxacin resistance in Neisseria gonorrhoeae strains isolated from Denmark from 1995–1998. Antimicrob. Agents Chemother. 45:117–123. 10.1128/AAC.45.1.117-123.2001.

Iverson CJ, Wang SA, Lee MV, Ohye RG, Trees DL, Knapp JS, Effler PV, O'Connor NP, Levine WC. 2004. Fluoroquinolone-resistance among Neisseria gonorrhoeae isolates in Hawaii, 1990–2000: role of foreign importation and endemic spread. Sex. Transm. Dis. 31:702–708. 10.1097/01.olq.0000145846.45781.a4.

Centers for Disease Control and Prevention (CDC). 2004. Increases in fluoroquinolone-resistant Neisseria gonorrhoeae among men who have sex with men—United States, 2003, and revised recommendations for gonorrhea treatment, 2004. MMWR Morb. Mortal. Wkly. Rep. 53:335–338.

Centers for Disease Control and Prevention (CDC). 2007. Update to CDC's sexually transmitted diseases treatment guidelines, 2006: fluoroquinolones no longer recommended for treatment of gonococcal infections. MMWR Morb. Mortal. Wkly. Rep. 56:332–336.

Brown ST, Pedersen HB, Holmes KK. 1977. Comparison of erythromycin base and estolate in gonococcal urethritis. JAMA 238:1371–1373. 10.1001/jama.1977.03280140049015.

Dillon JA, Ruben M, Li H, Borthagaray G, Márquez C, Fiorito S, Galarza P, Portilla JL, León L, Agudelo CI, Sanabria OM, Maldonado A, Prabhakar P. 2006. Challenges in the control of gonorrhea in South America and the Caribbean: monitoring the development of resistance to antibiotics. Sex. Transm. Dis. 33:87–95. 10.1097/01.olq.0000187231.28812.29.

Starnino S, GASP-LAC Working Group. Galarza P, Carvallo ME, Benzaken AS, Ballesteros AM, Cruz OM, Hernandez AL, Carbajal JL, Borthagaray G, Payares D, Dillon JA. 2012. Retrospective analysis of antimicrobial susceptibility trends (2000–2009) in Neisseria gonorrhoeae isolates from countries in Latin America and the Caribbean show evolving resistance to ciprofloxacin, azithromycin and decreased susceptibility to ceftriaxone. Sex. Transm. Dis. 39:813–821. 10.1097/OLQ.0b013e3182631c9f.

Cole M, Unemo M, Hoffmann S, Chisholm SA, Ison CA, van de Laar MJ. 2011. The European gonococcal antimicrobial surveillance programme, 2009. Euro Surveill. 16:19995 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19995.

Kubanova A, Frigo N, Kubanov A, Sidorenko S, Lesnaya I, Polevshikova S, Solomka V, Bukanov N, Domeika M, Unemo M. 2010. The Russian gonococcal antimicrobial susceptibility programme (RU-GASP)—national resistance prevalence in 2007 and 2008, and trends during 2005–2008. Euro Surveill. 15:19533 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19533.

Palmer HM, Young H, Winter A, Dave J. 2008. Emergence and spread of azithromycin-resistant Neisseria gonorrhoeae in Scotland. J. Antimicrob. Chemother. 62:490–494. 10.1093/jac/dkn235.

Starnino S, Stefanelli P, Neisseria gonorrhoeae Italian Study Group 2009. Azithromycin-resistant Neisseria gonorrhoeae strains recently isolated in Italy. J. Antimicrob. Chemother. 63:1200–1204. 10.1093/jac/dkp118.

Young H, Moyes A, McMillan A. 1997. Azithromycin and erythromycin resistant Neisseria gonorrhoeae following treatment with azithromycin. Int. J. STD AIDS 8:299–302. 10.1258/0956462971920127.

Handsfield HH, Dalu ZA, Martin DH, Douglas JM, Jr, McCarty JM, Schlossberg D. 1994. Multicenter trial of single-dose azithromycin vs. ceftriaxone in the treatment of uncomplicated gonorrhea. Azithromycin Gonorrhea Study Group. Sex. Transm. Dis. 21:107–111.

Newman LM, Moran JS, Workowski KA. 2007. Update on the management of gonorrhea in adults in the United States. Clin. Infect. Dis. 44(Suppl 3):S84–S101. 10.1086/511422.

Barry PM, Klausner JD. 2009. The use of cephalosporins for gonorrhea: the impending problem of resistance. Expert Opin. Pharmacother. 10:555–577. 10.1517/14656560902731993.

Ison CA, Mouton JW, Jones K, Fenton KA, Livermore DM. 2004. Which cephalosporin for gonorrhoea? Sex. Transm. Infect. 80:386–388. 10.1136/sti.2004.012757.

Akasaka S, Muratani T, Yamada Y, Inatomi H, Takahashi K, Matsumoto T. 2001. Emergence of cephem- and aztreonam-high-resistant Neisseria gonorrhoeae that does not produce beta-lactamase. J. Infect. Chemother. 7:49–50. 10.1007/s101560170034.

Tanaka M, Nakayama H, Tunoe H, Egashira T, Kanayama A, Saika T, Kobayashi I, Naito S. 2002. A remarkable reduction in the susceptibility of Neisseria gonorrhoeae isolates to cephems and the selection of antibiotic regimens for the single-dose treatment of gonococcal infection in Japan. J. Infect. Chemother. 8:81–86. 10.1007/s101560200011.

Chisholm SA, Mouton JW, Lewis DA, Nichols T, Ison CA, Livermore DM. 2010. Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink? J. Antimicrob. Chemother. 65:2141–2148. 10.1093/jac/dkq289.

Deguchi T, Yasuda M, Yokoi S, Ishida K, Ito M, Ishihara S, Minamidate K, Harada Y, Tei K, Kojima K, Tamaki M, Maeda S. 2003. Treatment of uncomplicated gonococcal urethritis by double-dosing of 200 mg cefixime at a 6-h interval. J. Infect. Chemother. 9:35–39. 10.1007/s10156-002-0204-8.

Ito M, Yasuda M, Yokoi S, Ito S, Takahashi Y, Ishihara S, Maeda S, Deguchi T. 2004. Remarkable increase in central Japan in 2001–2002 of Neisseria gonorrhoeae isolates with decreased susceptibility to penicillin, tetracycline, oral cephalosporins, and fluoroquinolones. Antimicrob. Agents Chemother. 48:3185–3187. 10.1128/AAC.48.8.3185-3187.2004.

Takahashi S, Kurimura Y, Hashimoto J, Uehara T, Hiyama Y, Iwasawa A, Nishimura M, Sunaoshi K, Takeda K, Suzuki N, Tsukamoto T. 2013. Antimicrobial susceptibility and penicillin-binding protein 1 and 2 mutations in Neisseria gonorrhoeae isolated from male urethritis in Sapporo, Japan. J. Infect. Chemother. 19:50–56. 10.1007/s10156-012-0450-3.

Yokoi S, Deguchi T, Ozawa T, Yasuda M, Ito S, Kubota Y, Tamaki M, Maeda S. 2007. Threat to cefixime treatment for gonorrhea. Emerg. Infect. Dis. 13:1275–1277. 10.3201/eid1308.060948.

Japanese Society of Sexually Transmitted Infection. 2011. Gonococcal infection. Sexually transmitted infections, diagnosis and treatment guidelines 2011. Jpn. J. Sex. Transm. Dis. 22(Suppl 1):52–59 (In Japanese).

Lo JY, Ho KM, Leung AO, Tiu FS, Tsang GK, Lo AC, Tapsall JW. 2008. Ceftibuten resistance and treatment failure of Neisseria gonorrhoeae infection. Antimicrob. Agents Chemother. 52:3564–3567. 10.1128/AAC.00198-08.

Hess D, Wu A, Golparian D, Esmaili S, Pandori W, Sena E, Klausner JD, Barry P, Unemo M, Pandori M. 2012. Genome sequencing of a Neisseria gonorrhoeae isolate of a successful international clone with decreased susceptibility and resistance to extended-spectrum cephalosporins. Antimicrob. Agents Chemother. 56:5633–5641. 10.1128/AAC.00636-12.

Li SY. 2012. Global transmission of multiple-drug resistant Neisseria gonorrhoeae strains refractive to cephalosporin treatment. J. Formos. Med. Assoc. 111:463–464. 10.1016/j.jfma.2012.03.004.

Martin I, Sawatzky P, Allen V, Hoang L, Lefebvre B, Mina N, Wong T, Gilmour M. 2012. Emergence and characterization of Neisseria gonorrhoeae isolates with decreased susceptibilities to ceftriaxone and cefixime in Canada: 2001–2010. Sex. Transm. Dis. 39:316–323. 10.1097/OLQ.0b013e3182401b69.

Su X, Jiang F, Qimuge Dai X, Sun H, Ye S. 2007. Surveillance of antimicrobial susceptibilities in Neisseria gonorrhoeae in Nanjing, China, 1999–2006. Sex. Transm. Dis. 34:995–999.

Unemo M, Shipitsyna E, Domeika M. 2011. Gonorrhoea surveillance, laboratory diagnosis and antimicrobial susceptibility testing of Neisseria gonorrhoeae in 11 countries of the eastern part of the WHO European region. APMIS 119:643–649. 10.1111/j.1600-0463.2011.02780.x

Allen VG, Mitterni L, Seah C, Rebbapragada A, Martin IE, Lee C, Siebert H, Towns L, Melano RG, Low DE. 2013. Neisseria gonorrhoeae treatment failure and susceptibility to cefixime in Toronto, Canada. JAMA 309:163–170. 10.1001/jama.2012.176575.

Ison CA, Hussey J, Sankar KN, Evans J, Alexander S. 2011. Gonorrhoea treatment failures to cefixime and azithromycin in England, 2010. Euro Surveill. 16:19833 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19833.

Lewis DA, Sriruttan C, Müller EE, Golparian D, Gumede L, Fick D, de Wet J, Maseko V, Coetzee J, Unemo M. 2013. Phenotypic and genetic characterization of the first two cases of extended-spectrum cephalosporin resistant Neisseria gonorrhoeae infection in South Africa and association with cefixime treatment failure. J. Antimicrob. Chemother. 68:1267–1270. 10.1093/jac/dkt034.

Unemo M, Golparian D, Stary A, Eigentler A. 2011. First Neisseria gonorrhoeae strain with resistance to cefixime causing gonorrhoea treatment failure in Austria, 2011. Euro Surveill. 16:19998 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19998.

Unemo M, Golparian D, Syversen G, Vestrheim DF, Moi H. 2010. Two cases of verified clinical failures using internationally recommended first-line cefixime for gonorrhoea treatment, Norway, 2010. Euro Surveill. 15:19721 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19721.

Chen YM, Stevens K, Tideman R, Zaia A, Tomita T, Fairley CK, Lahra M, Whiley D, Hogg G. 2013. Failure of ceftriaxone 500 mg to eradicate pharyngeal gonorrhoea, Australia. J. Antimicrob. Chemother. 68:1445–1447. 10.1093/jac/dkt017.

Read PJ, Limnios EA, McNulty A, Whiley D, Lahra LM. 2013. One confirmed and one suspected case of pharyngeal gonorrhoea treatment failure following 500 mg ceftriaxone in Sydney, Australia. Sex. Health 10:460–462. 10.1071/SH13077.

Unemo M, Golparian D, Hestner A. 2011. Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010. Euro Surveill. 16:1–3 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19792.

Unemo M, Golparian D, Potočnik M, Jeverica S. 2012. Treatment failure of pharyngeal gonorrhoea with internationally recommended first-line ceftriaxone verified in Slovenia, September 2011. Euro Surveill. 17:1–4 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20200.

Shimuta K, Unemo M, Nakayama S, Morita-Ishihara T, Dorin M, Kawahata T, Ohnishi M. 2013. Antimicrobial resistance and molecular typing of Neisseria gonorrhoeae isolates in Kyoto and Osaka, Japan, 2010 to 2012: intensified surveillance after identification of the first strain (H041) with high-level ceftriaxone resistance. Antimicrob. Agents Chemother. 57:5225–5232. 10.1128/AAC.01295-13.

Furuya R, Onoye Y, Kanayama A, Saika T, Iyoda T, Tatewaki M, Matsuzaki K, Kobayashi I, Tanaka M. 2007. Antimicrobial resistance in clinical isolates of Neisseria subflava from the oral cavities of a Japanese population. J. Infect. Chemother. 13:302–304. 10.1007/s10156-007-0541-8.

Saika T, Nishiyama T, Kanayama A, Kobayashi I, Nakayama H, Tanaka M, Naito S. 2001. Comparison of Neisseria gonorrhoeae isolates from the genital tract and pharynx of two gonorrhea patients. J. Infect. Chemother. 7:175–179. 10.1007/s101560100031.

Tanaka M, Nakayama H, Huruya K, Konomi I, Irie S, Kanayama A, Saika T, Kobayashi I. 2006. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype. Int. J. Antimicrob. Agents 27:20–26. 10.1016/j.ijantimicag.2005.08.021.

Ohnishi M, Watanabe Y, Ono E, Takahashi C, Oya H, Kuroki T, Shimuta K, Okazaki N, Nakayama S, Watanabe H. 2010. Spreading of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob. Agents Chemother. 54:1060–1067. 10.1128/AAC.01010-09.

Goodman SD, Scocca JJ. 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. U. S. A. 85:6982–6986. 10.1073/pnas.85.18.6982.

Hamilton HL, Dillard JP. 2006. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol. Microbiol. 59:376–385. 10.1111/j.1365-2958.2005.04964.x

Sox TE, Mohammed W, Sparling PF. 1979. Transformation-derived Neisseria gonorrhoeae plasmids with altered structure and function. J. Bacteriol. 138:510–518.

Kunz AN, Begum AA, Wu H, D'Ambrozio JA, Robinson JM, Shafer WM, Bash MC, Jerse AE. 2012. Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J. Infect. Dis. 205:1821–1829. 10.1093/infdis/jis277.

Warner DM, Folster JP, Shafer WM, Jerse AE. 2007. Regulation of the MtrC-MtrD-MtrE efflux pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196:1804–1812. 10.1086/522964.

Warner DM, Shafer WM, Jerse AE. 2008. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol. 70:462–478. 10.1111/j.1365-2958.2008.06424.x

Fermer C, Kristiansen BE, Sköld O, Swedberg G. 1995. Sulfonamide resistance in Neisseria meningitidis as defined by site-directed mutagenesis could have its origin in other species. J. Bacteriol. 177:4669–4675

Johnson SR, Morse SA. 1988. Antibiotic resistance in Neisseria gonorrhoeae: genetics and mechanisms of resistance. Sex. Transm. Dis. 15:217–224. 10.1097/00007435-198810000-00008

Swedberg G, Fermér C, Sköld O. 1993. Point mutations in the dihydropteroate synthase gene causing sulfonamide resistance. Adv. Exp. Med. Biol. 338:555–558. 10.1007/978-1-4615-2960-6_113

Elwell LP, Roberts M, Mayer LW, Falkow S. 1977. Plasmid-mediated beta-lactamase production in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 11:528–533. 10.1128/AAC.11.3.528

Roberts M, Elwell LP, Falkow S. 1977. Molecular characterization of two beta-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae. J. Bacteriol. 131:557–563

Brett M. 1989. A novel gonococcal beta-lactamase plasmid. J. Antimicrob. Chemother. 23:653–654. 10.1093/jac/23.4.653

Dillon JA, Yeung KH. 1989. Beta-lactamase plasmids and chromosomally mediated antibiotic resistance in pathogenic Neisseria species. Clin. Microbiol. Rev. 2(Suppl):S125–S133

Gouby A, Bourg G, Ramuz M. 1986. Previously undescribed 6.6-kilobase R plasmid in penicillinase-producing Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 29:1095–1097. 10.1128/AAC.29.6.1095

Müller EE, Fayemiwo SA, Lewis DA. 2011. Characterization of a novel β-lactamase-producing plasmid in Neisseria gonorrhoeae: sequence analysis and molecular typing of host gonococci. J. Antimicrob. Chemother. 66:1514–1517. 10.1093/jac/dkr162.

Pagotto F, Aman AT, Ng LK, Yeung KH, Brett M, Dillon JA. 2000. Sequence analysis of the family of penicillinase-producing plasmids of Neisseria gonorrhoeae. Plasmid 43:24–34. 10.1006/plas.1999.1431.

Chen SC, Yin YP, Dai XQ, Yu RX, Han Y, Sun HH, Ohnishi M, Unemo M, Chen XS. 2013. Prevalence and molecular epidemiological typing of penicillinase-producing Neisseria gonorrhoeae and their bla(TEM-135) gene variants in Nanjing, China. Sex. Transm. Dis. 40:872–876. 10.1097/OLQ.0000000000000037.

Nakayama SI, Tribuddharat C, Prombhul S, Shimuta K, Srifuengfung S, Unemo M, Ohnishi M. 2012. Molecular analyses of TEM genes and their corresponding penicillinase-producing Neisseria gonorrhoeae isolates in Bangkok, Thailand. Antimicrob. Agents Chemother. 56:916–920. 10.1128/AAC.05665-11.

Ohnishi M, Ono E, Shimuta K, Watanabe H, Okamura N. 2010. Identification of TEM-135 beta-lactamase in penicillinase-producing Neisseria gonorrhoeae strains in Japan. Antimicrob. Agents Chemother. 54:3021–3023. 10.1128/AAC.00245-10.

Powell AJ, Tomberg J, Deacon AM, Nicholas RA, Davies C. 2009. Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J. Biol. Chem. 284:1202–1212. 10.1074/jbc.M805761200.

Ropp PA, Hu M, Olesky M, Nicholas RA. 2002. Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 46:769–777. 10.1128/AAC.46.3.769-777.2002.

Sparling PF, Sarubbi FA, Blackman E. 1975. Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J. Bacteriol. 124:740–749.

Bowler LD, Zhang QY, Riou JY, Spratt BG. 1994. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in Neisseria meningitidis: natural events and laboratory stimulation. J. Bacteriol. 176:333–337.

Brannigan JA, Tirodimos IA, Zhang QY, Dowson CG, Spratt BG. 1990. Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae. Mol. Microbiol. 4:913–919. 10.1111/j.1365-2958.1990.tb00664.x.

Spratt BG. 1988. Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 332:173–176. 10.1038/332173a0

Spratt BG, Bowler LD, Zhang QY, Zhou J, Smith JM. 1992. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J. Mol. Evol. 34:115–125

Dowson CG, Jephcott AE, Gough KR, Spratt BG. 1989. Penicillin-binding protein 2 genes of non-beta-lactamase-producing, penicillin-resistant strains of Neisseria gonorrhoeae. Mol. Microbiol. 3:35–41. 10.1111/j.1365-2958.1989.tb00101.x

Sigmund CD, Ettayebi M, Morgan EA. 1984. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 12:4653–4663. 10.1093/nar/12.11.4653

Tomberg J, Temple B, Fedarovich A, Davies C, Nicholas RA. 2012. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae. Biochemistry 51:2775–2784. 10.1021/bi2017987

Barbour AG. 1981. Properties of penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 19:316–322. 10.1128/AAC.19.2.316

Folster JP, Johnson PJ, Jackson L, Dhulipali V, Dyer DW, Shafer WM. 2009. MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae. J. Bacteriol. 191:287–297. 10.1128/JB.01165-08

Ohneck EA, Zalucki YM, Johnson PJ, Dhulipala V, Golparian D, Unemo M, Jerse AE, Shafer WM. 2011. A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. mBio 2:e00187-11. 10.1128/mBio.00187-11

Zhao S, Duncan M, Tomberg J, Davies C, Unemo M, Nicholas RA. 2009. Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 53:3744–3751. 10.1128/AAC.00304-09

Olesky M, Zhao S, Rosenberg RL, Nicholas RA. 2006. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute and antibiotic permeation through PIB proteins with penB mutations. J. Bacteriol. 188:2300–2308. 10.1128/JB.188.7.2300-2308.2006

Olesky M, Hobbs M, Nicholas RA. 2002. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 46:2811–2820. 10.1128/AAC.46.9.2811-2820.2002

Zhao S, Tobiason DM, Hu M, Seifert HS, Nicholas RA. 2005. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol. Microbiol. 57:1238–1251. 10.1111/j.1365-2958.2005.04752.x

Helm RA, Barnhart MM, Seifert HS. 2007. pilQ missense mutations have diverse effects on PilQ multimer formation, piliation, and pilus function in Neisseria gonorrhoeae. J. Bacteriol. 189:3198–3207. 10.1128/JB.01833-06

Tomberg J, Unemo M, Davies C, Nicholas RA. 2010. Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry 49:8062–8070. 10.1021/bi101167x

Burdett V. 1986. Streptococcal tetracycline resistance mediated at the level of protein synthesis. J. Bacteriol. 165:564–569

Burdett V. 1991. Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J. Biol. Chem. 266:2872–2877

Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232–260. 10.1128/MMBR.65.2.232-260.2001

208. Knapp JS, Johnson SR, Zenilman JM, Roberts MC, Morse SA. 1988. High-level tetracycline resistance resulting from TetM in strains of Neisseria spp., Kingella denitrificans, and Eikenella corrodens. Antimicrob. Agents Chemother. 32:765–767. 10.1128/AAC.32.5.765

Roberts MC, Knapp JS. 1988. Host range of the conjugative 25.2-megadalton tetracycline resistance plasmid from Neisseria gonorrhoeae and related species. Antimicrob. Agents Chemother. 32:488–491. 10.1128/AAC.32.4.488

Sox TE, Mohammed W, Blackman E, Biswas G, Sparling PF. 1978. Conjugative plasmids in Neisseria gonorrhoeae. J. Bacteriol. 134:278–286

Bäckman A, Orvelid P, Vazquez JA, Sköld O, Olcén P. 2000. Complete sequence of a beta-lactamase-encoding plasmid in Neisseria meningitidis. Antimicrob. Agents Chemother. 44:210–212. 10.1128/AAC.44.1.210-212.2000

Dillon JAR, Pauzé M, Yeung KH. 1983. Spread of penicillinase-producing and transfer plasmids from the gonococcus to Neisseria meningitidis. Lancet i:779–781

Ikeda F, Tsuji A, Kaneko Y, Nishida M, Goto S. 1986. Conjugal transfer of beta-lactamase-producing plasmids of Neisseria gonorrhoeae to Neisseria meningitidis. Microbiol. Immunol. 30:737–742. 10.1111/j.1348-0421.1986.tb03000.x

Flett F, Humphreys GO, Saunders JR. 1981. Intraspecific and intergeneric mobilization of non-conjugative resistance plasmids by a 24.5 megadalton conjugative plasmid of Neisseria gonorrhoeae. J. Gen. Microbiol. 125:123–129

Gascoyne-Binzi DM, Heritage J, Hawkey PM. 1993. Nucleotide sequences of the tet(M) genes from the American and Dutch type tetracycline resistance plasmids of Neisseria gonorrhoeae. J. Antimicrob. Chemother. 32:667–676. 10.1093/jac/32.5.667

Gascoyne DM, Heritage J, Hawkey PM, Turner A, van Klingeren B. 1991. Molecular evolution of tetracycline-resistance plasmids carrying TetM found in Neisseria gonorrhoeae from different countries. J. Antimicrob. Chemother. 28:173–183. 10.1093/jac/28.2.173

Marquez CM, Dillon JA, Rodriguez V, Borthagaray G. 2002. Detection of a novel Tet M determinant in tetracycline-resistant Neisseria gonorrhoeae from Uruguay, 1996–1999. Sex. Transm. Dis. 29:792–797. 10.1097/00007435-200212000-00010

Chalkley LJ, Janse van Rensburg MN, Matthee PC, Ison CA, Botha PL. 1997. Plasmid analysis of Neisseria gonorrhoeae isolates and dissemination of tetM genes in southern Africa 1993–1995. J. Antimicrob. Chemother. 40:817–822. 10.1093/jac/40.6.817

Hu M, Nandi S, Davies C, Nicholas RA. 2005. High-level chromosomally mediated tetracycline resistance in Neisseria gonorrhoeae results from a point mutation in the rpsJ gene encoding ribosomal protein S10 in combination with the mtrR and penB resistance determinants. Antimicrob. Agents Chemother. 49:4327–4334. 10.1128/AAC.49.10.4327-4334.2005

Ramakrishnan V, White SW. 1992. The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature 358:768–771. 10.1038/358768a0

221. Galimand M, Gerbaud G, Courvalin P. 2000. Spectinomycin resistance in Neisseria spp. due to mutations in 16S rRNA. Antimicrob. Agents Chemother. 44:1365–1366. 10.1128/AAC.44.5.1365-1366.2000

Unemo M, Fasth O, Fredlund H, Limnios A, Tapsall JW. 2009. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J. Antimicrob. Chemother. 63:1142–1151. 10.1093/jac/dkp098

Unemo M, Golparian D, Skogen V, Olsen AO, Moi H, Syversen G, Hjelmevoll SO. 2013. Neisseria gonorrhoeae strain with high-level resistance to spectinomycin due to a novel resistance mechanism (mutated ribosomal protein S5) verified in Norway. Antimicrob. Agents Chemother. 57:1057–1061. 10.1128/AAC.01775-12

Ilina EN, Malakhova MV, Bodoev IN, Oparina NY, Filimonova AV, Govorun VM. 2013. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae. Front. Microbiol. 4:186. 10.3389/fmicb.2013.00186

Davies C, Bussiere DE, Golden BL, Porter SJ, Ramakrishnan V, White SW. 1998. Ribosomal proteins S5 and L6: high resolution crystal structures and roles in protein biosynthesis and antibiotic resistance. J. Mol. Biol. 279:873–888. 10.1006/jmbi.1998.1780

Belland RJ, Morrison SG, Ison C, Huang WM. 1994. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluororoquinolone-resistant isolates. Mol. Microbiol. 14:371–380. 10.1111/j.1365-2958.1994.tb01297.x

Alcalá B, Arreaza L, Salcedo C, Antolín I, Borrell N, Cacho J, De Las Cuevas C, Otero L, Sauca G, Vázquez F, Villar H, Vázquez JA. 2003. Molecular characterization of ciprofloxacin resistance of gonococcal strains in Spain. Sex. Transm. Dis. 30:395–398. 10.1097/00007435-200305000-00004

Lindbäck E, Rahman M, Jalal S, Wretlind B. 2002. Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. APMIS 110:651–657. 10.1034/j.1600-0463.2002.1100909.x

Trees DL, Sandul AL, Peto-Mesola V, Aplasca MR, Leng HB, Whittington WL, Knapp JS. 1999. Alterations within the quinolone resistance-determining regions of GyrA and ParC of Neisseria gonorrhoeae isolated in the Far East and the United States. Int. J. Antimicrob. Agents 12:325–332. 10.1016/S0924-8579(99)00081-3

Deguchi T, Yasuda M, Nakano M, Ozeki S, Kanematsu E, Kawada Y, Ezaki T, Saito I. 1996. Uncommon occurrence of mutations in the gyrB gene associated with quinolone resistance in clinical isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 40:2437–2438

Douthwaite S, Champney WS. 2001. Structures of ketolides and macrolides determine their mode of interaction with the ribosomal target site. J. Antimicrob. Chemother. 48(Suppl T1):1–8. 10.1093/jac/48.suppl_2.1

Cousin SL, Jr, Whittington WL, Roberts MC. 2003. Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 51:131–133. 10.1093/jac/dkg040

Allen VG, Farrell DJ, Rebbapragada A, Tan J, Tijet N, Perusini SJ, Towns L, Lo S, Low DE, Melano RG. 2011. Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob. Agents Chemother. 55:703–712. 10.1128/AAC.00788-10

Golparian D, Shafer WM, Ohnishi M, Unemo M. 2012. Inactivation of the MtrCDE, MacAB, and NorM efflux pumps in Neisseria gonorrhoeae strains with clinical resistance to extended-spectrum cephalosporins make them susceptible to several antimicrobials, abstr P171. 18th Int. Pathogenic Neisseria Conf., 9 to 14 September 2012, Wurzburg, Germany

Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM. 1995. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrCDE efflux system. Microbiology 141:611–622. 10.1099/13500872-141-3-611

Hagman KE, Lucas CE, Balthazar JT, Snyder L, Nilles M, Judd RC, Shafer WM. 1997. The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 143:2117–2125. 10.1099/00221287-143-7-2117

Hagman KE, Shafer WM. 1995. Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J. Bacteriol. 171:4162–4165

Veal WL, Nicholas RA, Shafer WM. 2002. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J. Bacteriol. 184:5619–5624. 10.1128/JB.184.20.5619-5624.2002

Zarantonelli L, Borthagaray G, Lee EH, Shafer WM. 1999. Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob. Agents Chemother. 43:2468–2472

Zarantonelli L, Borthagary G, Lee EH, Veal W, Shafer WM. 2001. Decreased susceptibility to azithromycin and erythromycin mediated by a novel mtrR promoter mutation in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 47:651–654. 10.1093/jac/47.5.651

Rouquette-Loughlin CE, Balthazar JT, Shafer WM. 2005. Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 56:856–860. 10.1093/jac/dki333

Luna VA, Cousin S, Jr, Whittington WLH, Roberts MC. 2000. Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob. Agents Chemother. 44:2503–2506. 10.1128/AAC.44.9.2503-2506.2000

Lindberg R, Fredlund H, Nicholas R, Unemo M. 2007. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob. Agents Chemother. 51:2117–2122. 10.1128/AAC.01604-06

Ameyama S, Onodera S, Takahata M, Minami S, Maki N, Endo K, Goto H, Suzuki H, Oishi Y. 2002. Mosaic-like structure of penicillin-binding protein 2 gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob. Agents Chemother. 46:3744–3749. 10.1128/AAC.46.12.3744-3749.2002

Ito M, Deguchi T, Mizutani KS, Yasuda M, Yokoi S, Ito S, Takahashi Y, Ishihara S, Kawamura Y, Ezaki T. 2005. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in central Japan. Antimicrob. Agents Chemother. 49:137–143. 10.1128/AAC.49.1.137-143.2005

Osaka K, Takakura T, Narukawa K, Takahata M, Endo K, Kiyota H, Onodera S. 2008. Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone. J. Infect. Chemother. 14:195–203. 10.1007/s10156-008-0610-7

Ochiai S, Sekiguchi S, Hayashi A, Shimadzu M, Ishiko H, Matsushima-Nishiwaki R, Kozawa O, Yasuda M, Deguchi T. 2007. Decreased affinity of mosaic-structure recombinant penicillin-binding protein 2 for oral cephalosporins in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 60:54–60. 10.1093/jac/dkm166

Takahata S, Senju N, Osaki Y, Yoshida T, Ida T. 2006. Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 50:3638–3645. 10.1128/AAC.00626-06

Lee SG, Lee H, Jeong SH, Yong D, Chung GT, Lee YS, Chong Y, Lee K. 2010. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J. Antimicrob. Chemother. 65:669–675. 10.1093/jac/dkp505

Olsen B, Pham TL, Golparian D, Johansson E, Tran HK, Unemo M. 2013. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from Vietnam, 2011. BMC Infect. Dis. 13:40. 10.1186/1471-2334-13-40

Whiley DM, Limnios EA, Ray S, Sloots TP, Tapsall JW. 2007. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone. Antimicrob. Agents Chemother. 51:3111–3116. 10.1128/AAC.00306-07

Whiley DM, Goire N, Lambert SB, Ray S, Limnios EA, Nissen MD, Sloots TP, Tapsall JW. 2010. Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is associated with mutations G542S, P551S and P551L in the gonococcal penicillin-binding protein 2. J. Antimicrob. Chemother. 65:1615–1618. 10.1093/jac/dkq187

Tomberg J, Unemo M, Ohnishi M, Davies C, Nicholas RA. 2013. Identification of the amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from the Neisseria gonorrhoeae strain H041. Antimicrob. Agents Chemother. 57:3029–3036. 10.1128/AAC.00093-13

Unemo M, Dillon JA. 2011. Review and international recommendation of methods for typing Neisseria gonorrhoeae isolates and their implications for improved knowledge of gonococcal epidemiology, treatment, and biology. Clin. Microbiol. Rev. 24:447–458. 10.1128/CMR.00040-10

Whiley DM, Jacobsson S, Tapsall JW, Nissen MD, Sloots TP, Unemo M. 2010. Alterations of the pilQ gene in Neisseria gonorrhoeae are unlikely contributors to decreased susceptibility to ceftriaxone and cefixime in clinical gonococcal strains. J. Antimicrob. Chemother. 65:2543–2547. 10.1093/jac/dkq377

Gottesman MM, Ling V. 2006. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 580:998–1009. 10.1016/j.febslet.2005.12.060

Lee EH, Shafer WM. 1999. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33:839–845. 10.1046/j.1365-2958.1999.01530.x

Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar J, Shafer WM. 2003. The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J. Bacteriol. 185:1101–1106. 10.1128/JB.185.3.1101-1106.2003

Luna VA, Coates P, Eady EA, Cove JH, Nguyen TT, Roberts MC. 1999. A variety of Gram-positive bacteria carry mobile mef genes. J. Antimicrob. Chemother. 44:19–25. 10.1093/jac/44.1.19

Golparian D, Shafer WM, Ohnishi M, Unemo M. 2014. Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 58:3556–3559. 10.1128/AAC.00038-14

Shafer WM, Qu XD, Waring AJ, Lehrer RI. 1998. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl. Acad. Sci. U. S. A. 95:1829–1833. 10.1073/pnas.95.4.1829

Jerse AE, Sharma ND, Bodner ANB, Snyder LA, Shafer WM. 2003. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 71:5576–5582. 10.1128/IAI.71.10.5576-5582.2003

Rouquette-Loughlin C, Veal WL, Lee EJ, Zarantonelli L, Balthazar JT, Shafer WM. 2001. Antimicrobial efflux systems possessed by Neisseria gonorrhoeae and Neisseria meningitidis viewed as virulence factors, p 187–200 In Paulsen IT, Lewis K. (ed), Microbial drug efflux. Horizon Scientific Press, Wymonham, United Kingdom

Lucas CE, Balthazar JT, Hagman KE, Shafer WM. 1997. The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J. Bacteriol. 179:4123–4128

Zalucki YM, Dhulipala V, Shafer WM. 2012. Dueling regulatory properties of a transcriptional activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in Neisseria gonorrhoeae. mBio 3:e00446-12. 10.1128/mBio.00446-12

Correia FF, Inouye S, Inouye M. 1988. A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J. Biol. Chem. 264:12914–12916

Johnson SR, Sandul AL, Parekh M, Wang SA, Knapp JS, Trees DL. 2003. Mutations causing in vitro resistance to azithromycin in Neisseria gonorrhoeae. Int. J. Antimicrob. Agents 21:414–419. 10.1016/S0924-8579(03)00039-6

Rouquette-Loughlin CE, Balthazar JT, Hill SA, Shafer WM. 2004. Modulation of the mtrCDE-encoded efflux pump gene complex due to a Correia element insertion sequence. Mol. Microbiol. 54:731–741. 10.1111/j.1365-2958.2004.04299.x

Nikaido H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388. 10.1126/science.8153625

Derrick JP, Urwin R, Suker J, Feavers IM, Maiden MC. 1999. Structural and evolutionary inference from molecular variation in Neisseria porins. Infect. Immun. 67:2406–2413

Gill MJ, Simjee S, Al-Hattawi K, Robertson BD, Easmon CS, Ison CA. 1998. Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob. Agents Chemother. 42:2799–2803

Shafer WM, Folster JP. 2006. Towards an understanding of chromosomally mediated penicillin resistance in Neisseria gonorrhoeae: evidence for a porin-efflux pump collaboration. J. Bacteriol. 188:2297–2299. 10.1128/JB.188.7.2297-2299.2006

Drake SL, Koomey M. 1995. The product of the pilQ gene is essential in the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol. Microbiol. 18:975–986. 10.1111/j.1365-2958.1995.18050975.x

Drake SL, Sandstedt SA, Koomey M. 1997. PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol. Microbiol. 23:657–668. 10.1046/j.1365-2958.1997.2511618.x

Chen CJ, Tobiason DM, Thomas CE, Shafer WM, Seifert HS, Sparling PF. 2

Downloads

Published

2025-04-01

How to Cite

1.
Naagar M, Loona N, Gupta T, Goel K, Kumar Maity M. Current Scenario and Various Mechanisms of Antimicrobial Resistance in Neisseria gonorrhoeae – A Comprehensive Review. J Neonatal Surg [Internet]. 2025Apr.1 [cited 2025Oct.5];14(10S):589-61. Available from: https://jneonatalsurg.com/index.php/jns/article/view/2892

Similar Articles

You may also start an advanced similarity search for this article.