Assessment of Antioxidant and Antimicrobial Activity of Leucas Aspera and its Application in Neuroprotection
DOI:
https://doi.org/10.52783/jns.v14.2056Keywords:
flavonoid, metabolite, Neurodegenerative disease, Oxidative stress, polyphenolAbstract
Some phytochemicals play a major role in protecting neuronal health. Leucas aspera exhibits beneficial effects in supporting neuroprotective activities. The major role of Leucas aspera extract was studied for antioxidant and antimicrobial activities. Phenols and flavonoids derived from the plant help in the scavenging activity of free radical ions by lowering the stress involved in increasing the levels of oxidative ions in the body and shielding cells from internal harm. This study focuses on evaluating the effects of Leucas aspera for its antioxidant activity by performing DPPH (2, 2-diphenyl-1-picrylhydrazyl), Nitrite assay using Nitric Oxide, and (2, 2'-azinobis-3-ethylbenzothiazoline-6sulphonic acid) ABTS assay. The obtained nitric oxide IC50 value was 89.60 (µg/ml). In addition, the Leucas aspera extract zone of inhibition was measured and antibacterial activity of the plant extract concerning Bacillus subtilis (0.469 µg/ml) Staphylococcus aureus (10 µg/ml), Klebsiella pneumoniae (9 µg/ml), E. coli (8.25 µg/ml), Candida albicans (7.5 µg/ml), Penicillium chrysogenum (8.0 µg/ml), Aspergillus niger (8.5 µg/ml). This suggests that polyphenols and flavonoids derived from Leucas aspera contain precursors that are potential metabolites responsible for the cure and management of the progress of neurodegenerative diseases. Leucas aspera-derived compounds from the chromatography technique are beneficial in analyzing bioactive compounds towards the neurodegenerative disorder.
Downloads
Metrics
References
Roy, U. B., Keservani, R. K., Kesharwani, R. K., Jyothi, S. R., Akhila, A., Dakshayini, P. N., & Patil, S. J. (2024). Axonal pathology in traumatic brain injury: An overview. In R. N. Chaurasia, S. Ohia, & D. Bagchi (Eds.), A review on diverse neurological disorders: Pathophysiology, molecular mechanisms, and therapeutics (1st ed.). Elsevier. https://doi.org/10.1016/B978-0-323-95735-9.00045-0
Collaborators, D. F. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. The Lancet. Public Health, 7(2). https://doi.org/10.1016/S2468-2667(21)00249-8
Delic, V., Beck, K. D., Pang, K. C. H., et al. (2020). Biological links between traumatic brain injury and Parkinson’s disease. Acta neuropathol commun, 8(45). https://doi.org/10.1186/s40478-020-00924-7
Lobine, D., Sadeer, N., Jugreet, S., Suroowan, S., Keenoo, B. S., Imran, M., Venugopala, K. N., Ibrahim, F. M., Zengin, G., & Mahomoodally, M. F. (2021). Potential of medicinal plants as neuroprotective and therapeutic properties against amyloid-β-related toxicity and glutamate-induced excitotoxicity in human neural cells. Current Neuropharmacology, 19(9). https://doi.org/10.2174/1570159X19666210412095251
Olufunmilayo, E. O., B. M., & Holsinger, R. M. (2023). Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants, 12(2), 517. https://doi.org/10.3390/antiox12020517
Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates, 3(1), 184-207. https://doi.org/10.3390/ddc3010011
Kennedy, D. O., & Wightman, E. L. (2011). Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Advances in Nutrition, 2(1), 32. https://doi.org/10.3945/an.110.000117
Teleanu, R. I., Chircov, C., Grumezescu, A. M., Volceanov, A., & Teleanu, D. M. (2019). Antioxidant therapies for neuroprotection—A review. Journal of Clinical Medicine, 8(10), 1659. https://doi.org/10.3390/jcm8101659
Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A., & Jaremko, M. (2019). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243
Kolgi, R. R., Haleshappa, R., Sajeeda, N., Keshamma, E., Karigar, C. S., & Patil, S. J. (2021). Antioxidant and anticancer properties of ethanol extracts of Leucas aspera. Asian Journal of Biological and Life Sciences, 10(1), 165-171.
Abubakar, A. R., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy & Bioallied Sciences, 12(1), 1. https://doi.org/10.4103/jpbs.JPBS17519
Haleshappa, R., Patil, S. J., & Murthy, S. M. S. (2021). Phytochemical analysis, in vitro evaluation of antioxidant and free radical scavenging activity of Simarouba glauca seeds. Advances in Pharmacology and Pharmacy, 9(1), 01-08. https://doi.org/10.13189/app.2021.090101
Perez, M., Dominguez-López, I., & Lamuela-Raventos, R. M. (2023). The chemistry behind the Folin–Ciocalteu method for the estimation of (poly)phenol content in food: Total phenolic intake in a Mediterranean dietary pattern. Journal of Agricultural and Food Chemistry, 71(46). https://doi.org/10.1021/acs.jafc.3c04022
Pandey, B., & Meena, R. (2015). Estimation of total phenolic and flavonoid contents in some medicinal plants and their antioxidant activities. Nepal Journal of Science and Technology, 15(1), 53–60. https://doi.org/10.3126/njst.v15i1.12010
Haleshappa, R., Patil, S. J., Usha, T., & Murthy, S. M. (2020). Phytochemicals, antioxidant profile and GCMS analysis of ethanol extract of Simarouba glauca seeds. Asian Journal of Biological and Life Sciences, 9(3), 379-385.
Cano, A., Maestre, A. B., & Arnao, M. B. (2022). ABTS/TAC methodology: Main milestones and recent applications. Processes, 11(1), 185. https://doi.org/10.3390/pr11010185
Boora, F., Chirisa, E., & Mukanganyama, S. (2013). Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. Journal of Food Processing, (1). https://doi.org/10.1155/2014/918018
Sreedharan, S., Gothe, A., Aier, K., Kirankumar, S. V., Kumar, K. P., & Patil, S. J. (2020). Bioactive molecules and antimicrobial studies of Rhus semialata seeds. Research Journal of Medicinal Plants, 13(1), 10-17.
Daf, A. N., et al. (2023). Comparison of different solvent and extraction methods for isolation of flavonoids compound from leaves of Clerodendrum infortunatum Linn. Journal of Pharmacognosy and Natural Products, 8(8). https://www.researchgate.net/publication/371721735
Rahman, M. A., & Islam, M. S. (2013). Antioxidant, antibacterial and cytotoxic effects of the phytochemicals of whole Leucas aspera extract. Asian Pacific Journal of Tropical Biomedicine, 3(4), 273. https://doi.org/10.1016/S2221-1691(13)60062-3
Vasudha, K., Archana, D., Mutyalamma, B., & Kishori, B. (2019). Phytochemical screening, antimicrobial, and antioxidant activities of root and leaf extracts of Leucas aspera. Asian Journal of Pharmaceutical and Clinical Research, 12(3), 141–147. https://doi.org/10.22159/ajpcr.2019.v12i3.29085
Bairagi, J. H., Haritha, G., Yadav, L., Garg, S., Rani, V., Pulipati, S., Kolgi, R. R., Pundir, R., & Patil, S. J. (2023). To study of Artemisia nilagirica leaves for their antithyroid, oxidative and antihyperglycemic properties. Journal of Advanced Zoology, 44(S4), 40–51.
Jamkhande, P. G., Wattamwar, A. S., Pekamwar, S. S., & Chandak, P. G. (2014). Antioxidant, antimicrobial activity and in silico PASS prediction of Annona reticulata Linn. root extract. Beni-Suef University Journal of Basic and Applied Sciences, 3(2), 140-148. https://doi.org/10.1016/j.bjbas.2014.05.008
Premalatha, S. J., & Patil, S. J. (2022). Isolation and characterization of pharmacological endophytic fungi from Cassia fistula leaves. Journal of Pharmaceutical Negative Results, 13(Spl. 10), 3594-3597.
Jyothi, S. R., Malathi, H., & Patil, S. J. (2023). Efficacy of Graviola seed extract (Annona muricata: Annonaceae) on E-Cadherin gene regulation and cytotoxicity in MDA-MB-231 cell lines. Asian Journal of Pharmaceutics, 17(1), 38-42.
Keservani, R. K., Shelke, S. J., Gawali, V., Gaviraj, E. N., Binorkar, S. V., Rane, S. S., Sarvadnya, A. A., & Patil, S. J. (2024). Anti-Alzheimer effect of Ammannia baccifera whole plants ethanolic extract. International Journal of Zoological Investigations, 10(2), 671-678.
Giri, S., Jamade, P. S., Pendakur, B., Sanjotha, G., Manawadi, S., Binorkar, S. V., Rao, N. S., & Patil, S. J. (2024). Anticancer, antidiabetic, antioxidant properties and phytoconstituents of efficacy of methanolic extract of Euphorbia milii leaves. African Journal of Biological Sciences, 6(6), 5419-5429.
Devika, S. N. C., Keerthana, M., Dsouza, M. R., Patil, S. J., & Premalatha, S. J. (2024). Comparative in vitro study of the antidiabetic, anti-inflammatory, and antioxidant potential of Piper cubeba, Piper betle, and Piper nigrum. The Bioscan, 19(10-S1), 238-249.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.