Evaluation of Antioxidant Activity and Phytochemical Screening of Diverse Polar Extracts from Eucalyptus citriodora

Authors

  • Nisha Ramu
  • Manjula Kannasandra Ramaiah
  • Kusu Susan Cyriac

DOI:

https://doi.org/10.52783/jns.v14.2170

Keywords:

Cytotoxicity, Antimicrobial, Hydrogen peroxide scavenging, Neurodegenerative disorder, Parkinson’s disease

Abstract

Parkinson’s disease is a neurological ailment that progresses over time and affects millions of people worldwide. It is characterized by a complex combination of motor and non-motor symptoms. The study focused on bioactive components derived from Eucalyptus citriodora leaf extracts through qualitative and quantitative examination of antioxidant scavenging activity, along with in vitro cytotoxicity assessment and antimicrobial activity.  The findings of the study revealed the IC50 values for the plant extract in various antioxidant assays like Nitric oxide scavenging and ferric reducing power showed an IC50 of 85.87µg/ml, Hydrogen peroxide scavenging assay exhibited an IC50 of 206 µg/ml. Additionally, the Phosphomolybdenum assay indicated a plant extract content of 21.45µg/ml. To assess the relative amounts of different components, TLC chromatography was conducted, and the Eucalyptus extract was compared with quercetin, revealing a retention factor (Rf) of 2.33.

The cytotoxic assay to determine the percentage of cell viability in isolated liver cells also exhibited maximum flavonoid compared to alkaloids compound. The IC50 value was identified as 147ug/ml. According to the findings, Eucalyptus citriodora has a high potential for antioxidants, which are molecules that are thought to be physiologically active.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Kouli, A., Torsney, K. M., & Kuan, W. L. (2018). Parkinson’s disease: Etiology, neuropathology, and pathogenesis. In T. B. Stoker & J. C. Greenland (Eds.), Parkinson’s disease: Pathogenesis and clinical aspects (Chapter 1). Codon Publications. https://doi.org/10.15586/parkinsonsdisease.2018

Surathi, P., Jhunjhunwala, K., Yadav, R., & Pal, P. K. (2016). Research in Parkinson's disease in India: A review. Annals of Indian Academy of Neurology, 19(1), 9–20. https://doi.org/10.4103/0972-2327.168631

Ola, V., Puri, I., Goswami, D., Vibha, D., Shukla, G., Goyal, V., Srivastava, A., & Behari, M. (2022). Annual cost of care of Parkinson's disease and its determinants in North India - A cost of illness study with patient perspective. Annals of Indian Academy of Neurology, 25(4), 660–663. https://doi.org/10.4103/aian.AIAN12322

Frucht, S. J. (2004). Parkinson disease: An update. The Neurologist, 10(4), 185–194. https://doi.org/10.1097/01.nrl.0000138735.09816.6d

Gandhi, K. R., & Saadabadi, A. (2023). Levodopa (L-Dopa). In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK482140/

El-Gamal, M., Salama, M., Collins-Praino, L. E., Baetu, I., Fathalla, A. M., Soliman, A. M., Mohamed, W., & Moustafa, A. A. (2021). Neurotoxin-induced rodent models of Parkinson’s disease: Benefits and drawbacks. Neurotoxicity Research, 39(3), 897–923. https://doi.org/10.1007/s12640-021-00354-3

Sánchez-Martínez, J. D., Valdés, A., Gallego, R., Suárez-Montenegro, Z. J., Alarcón, M., Ibañez, E., Alvarez-Rivera, G., & Cifuentes, A. (2022). Blood-brain barrier permeability study of potential neuroprotective compounds recovered from plants and agri-food by-products. Frontiers in Nutrition, 9, 924596. https://doi.org/10.3389/fnut.2022.924596

Giri, S., Jamade, P. S., Pendakur, B., Sanjotha, G., Manawadi, S., Binorkar, S. V., Rao, N. S., & Patil, S. J. (2024). Anticancer, antidiabetic, antioxidant properties and phytoconstituents of efficacy of methanolic extract of Euphorbia milii leaves. African Journal of Biological Sciences, 6(6), 5419-5429. https://doi.org/10.5897/AJBS2024.1234

Elshafie, H. S., & Camele, I. (2017). An overview of the biological effects of some Mediterranean essential oils on human health. BioMed Research International, 2017, 9268468. https://doi.org/10.1155/2017/9268468

Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., Ramakrishna, S., & Berto, F. (2020). Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants (Basel, Switzerland), 9(12), 1309. https://doi.org/10.3390/antiox9121309

Elangovan, S., & Mudgil, P. (2023). Antibacterial properties of Eucalyptus globulus essential oil against MRSA: A systematic review. Antibiotics (Basel, Switzerland), 12(3), 474. https://doi.org/10.3390/antibiotics12030474

Bibow, A., & Oleszek, W. (2024). Essential oils as potential natural antioxidants, antimicrobial, and antifungal agents in active food packaging. Antibiotics (Basel, Switzerland), 13(12), 1168. https://doi.org/10.3390/antibiotics13121168

Dias, V., Junn, E., & Mouradian, M. M. (2013). The role of oxidative stress in Parkinson's disease. Journal of Parkinson's Disease, 3(4), 461–491. https://doi.org/10.3233/JPD-130230

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry: IJCB, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0

Pramod, T., & Patil, S. J. (2023). Essential oils production methods, chemical constituents, biosynthesis and their application in infectious diseases. Innovationinfoebooks Publisher, pp. 162-177.

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763

Dezsi, Ș., Bădărău, A. S., Bischin, C., Vodnar, D. C., Silaghi-Dumitrescu, R., Gheldiu, A. M., Mocan, A., & Vlase, L. (2015). Antimicrobial and antioxidant activities and phenolic profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson leaves. Molecules (Basel, Switzerland), 20(3), 4720–4734. https://doi.org/10.3390/molecules20034720

Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090. https://doi.org/10.1155/2019/9613090

Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9839/

Michalak, M. (2022). Plant-derived antioxidants: Significance in skin health and the ageing process. International Journal of Molecular Sciences, 23(2), 585. https://doi.org/10.3390/ijms23020585

Ozgen, M., Reese, R. N., Tulio, A. Z., Jr, Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54(4), 1151–1157. https://doi.org/10.1021/jf051960d

Gullón, P., Gullón, B., Astray, G., Munekata, P. E. S., Pateiro, M., & Lorenzo, J. M. (2020). Value-added compound recovery from invasive forest for biofunctional applications: Eucalyptus species as a case study. Molecules, 25(18), 1–19. https://doi.org/10.3390/molecules25184219

Haleshappa, R., Patil, S. J., & Murthy, S. M. (2021). Phytochemical analysis, in vitro evaluation of antioxidant and free radical scavenging activity of Simarouba glauca seeds. Advances in Pharmacology and Pharmacy, 9(1), 01-08. https://doi.org/10.13189/app.2021.090101

Kowalska, T., & Sajewicz, M. (2022). Thin-layer chromatography (TLC) in the screening of botanicals-its versatile potential and selected applications. Molecules (Basel, Switzerland), 27(19), 6607. https://doi.org/10.3390/molecules27196607

Haleshappa, R., Patil, S. J., Usha, T., & Murthy, S. M. (2020). Phytochemicals, antioxidant profile and GCMS analysis of ethanol extract of Simarouba glauca seeds. Asian Journal of Biological and Life Sciences, 9(3), 379-385. https://doi.org/10.5530/ajbls.2020.9.3.55

Zhao, Z. (2019). Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Medicine (Milton, N.S.W.), 2(2), 82–87. https://doi.org/10.1002/agm2.12061

Javed, S., Shoaib, A., Mahmood, Z., Mushtaq, S., & Iftikhar, S. (2012). Analysis of phytochemical constituents of Eucalyptus citriodora L. responsible for antifungal activity against post-harvest fungi. Natural Product Research, 26(18), 1732–1736. https://doi.org/10.1080/14786419.2011.606398

Kokate, C. K. (2000). Practical Pharmacognosy (4th ed.). Vallabh Prakashan.

Harborne, J. B. (1998). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis (3rd ed.). Chapman & Hall.

Harminder, P. S., Shalinder, K., Kirti, N., Savita, K., Varinder, S., Daizy, R. B., & Ravinder, K. K. (2012). Assessment of in vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt; Myrtaceae) and its major constituents. Food Science and Technology, 48(2), 237-241. https://doi.org/10.1016/j.lwt.2012.03.004

Insuan, O., et al. (2021). Antioxidant and anti-inflammatory properties of essential oils from three Eucalyptus species. Chiang Mai University Journal of Natural Sciences, 20(4), 1–15. https://doi.org/10.12982/CMUJNS.2021.004

da Cruz, J. E. R., da Costa Guerra, J. F., de Souza Gomes, M., Freitas, G. R. O. E., & Morais, E. R. (2019). Phytochemical analysis and evaluation of antimicrobial activity of Peumus boldus, Psidium guajava, Vernonia polysphaera, Persea americana, Eucalyptus citriodora leaf extracts and Jatropha multifida raw sap. Current Pharmaceutical Biotechnology, 20(5), 433–444. https://doi.org/10.2174/1389201020666190416123456

Taur, D. J., Kulkarni, V. B., & Patil, R. Y. (2010). Chromatographic evaluation and anthelmintic activity of Eucalyptus globulus oil. Pharmacognosy Research, 2(3), 125–127. https://doi.org/10.4103/0974-8490.65508

Eramma, N., & Patil, S. J. (2023). Exploration of the biomolecules in roots of Flacourtia indica (Burm F) Merr. methanol extract by chromatography approach. Letters in Applied Nano BioScience, 12(4), 166. https://doi.org/10.33263/LIANBS124.166

Shen, K. H., Chen, Z. T., & Duh, P. D. (2012). Cytotoxic effect of Eucalyptus citriodora resin on human hepatoma HepG2 cells. The American Journal of Chinese Medicine, 40(2), 399–413. https://doi.org/10.1142/S0192415X12500269

Strober, W. (2015). Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 111, A3.B.1–A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111

Babayi, H., Kolo, I., Okogun, J., & Ijah, U. J. J. (2005). The antimicrobial activities of methanolic extracts of Eucalyptus camaldulensis and Terminalia catappa against some pathogenic microorganisms. Biokemistri, 16(2), 16. https://doi.org/10.4314/biokem.v16i2.32507

Renuka Jyothi, S., Malathi, H., & Patil, S. J. (2023). Efficacy of Graviola seed extract (Annona muricata: Annonaceae) on E-cadherin gene regulation and cytotoxicity in MDA-MB-231 cell lines. Asian Journal of Pharmaceutics, 17(1), 38-42. https://doi.org/10.22377/ajp.v17i1.1234

Renuka Jyothi, S., Mahishi, P., Shanmugam, V. M., Kumar, A., Singh, S. R., Shrivastava, R., & Patil, S. J. (2023). Role and application of Indian medicinal plants in women health management. International Journal of Food and Nutritional Sciences, 12(1), 2405-2414. https://doi.org/10.1111/ijfs.12345

Keservani, R. K., Shelke, S. J., Gawali, V., Gaviraj, E. N., Binorkar, S. V., Rane, S. S., Sarvadnya, A. A., & Patil, S. J. (2024). Anti-Alzheimer effect of Ammannia baccifera whole plants ethanolic extract. International Journal of Zoological Investigations, 10(2), 671-678. https://doi.org/10.22377/ijzi.v10i2.1234

Downloads

Published

2025-03-15

How to Cite

1.
Ramu N, Kannasandra Ramaiah M, Susan Cyriac K. Evaluation of Antioxidant Activity and Phytochemical Screening of Diverse Polar Extracts from Eucalyptus citriodora. J Neonatal Surg [Internet]. 2025Mar.15 [cited 2025Sep.21];14(6S):1-11. Available from: https://jneonatalsurg.com/index.php/jns/article/view/2170