Spinal Muscular Atrophy: A Multidisciplinary Approach to Diagnosis, Emerging Therapies Recent and Advance Gene Therapy, and Rehabilitation

Authors

  • Priyanka Sonker
  • Mamta Tiwari
  • Nisha Sharma
  • Namrata Singh
  • Neha

DOI:

https://doi.org/10.52783/jns.v14.1995

Keywords:

Survival Motor Neuron, Nusinersen, Onasemnogene, Abeparvovec, CRISPR

Abstract

Spinal muscular atrophy (SMA) is a serious neuromuscular condition marked by the gradual loss of α-motor neurons, resulting from inadequate production of survival motor neuron (SMN) protein. Progress in molecular genetics has enabled the creation of specialized treatments, revolutionizing SMA treatment and patient outcomes. This review explores the molecular mechanisms underlying SMA, current diagnostic techniques, and recent therapeutic approaches, including disease-modifying gene therapies such as antisense oligonucleotides (Nusinersen), small molecules (Risdiplam), and AAV9 gene delivery (Onasemnogene abeparvovec). Additionally, the review discusses the emerging potential of CRISPR/Cas9-based gene editing and the role of comprehensive care strategies, including rehabilitation and multidisciplinary management, in improving quality of life. A comparative analysis of FDA-approved treatments highlights their clinical efficacy, safety, and long-term implications. Furthermore, the review underscores the importance of combining gene therapies with supportive care techniques to optimize SMA management. As research advances, an integrated approach incorporating novel gene-editing tools and personalized treatment strategies may further enhance therapeutic outcomes, providing hope for a more effective and long-term solution for SMA patients.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, Mercuri E, Rose K, El-Khairi M, Gerber M et al (2021) Risdiplam in type 1 spinal muscular atrophy. N Engl J Med 384:915–923

Hamilton G, Gillingwater TH (2013) Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med 19:40–50

Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy.Proc Natl Acad Sci USA 96:6307–6311

Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3:97–110

6Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B,

Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371:2120–2133

Pankaj Bagga1et.al.,/ Diving into progress: a review on current therapeutic advancements in spinal muscular atrophy,(2024)/ Frontiers in Neurology,/ 10.3389/fneur.2024.1368658

Toro W, Yang M, Georgieva M, Anderson A, LaMarca N, Patel A, et al. Patient and caregiver outcomes after onasemnogene abeparvovec treatment: findings from the cure SMA 2021 membership survey. Adv Ther. (2023) 40:5315–37. doi: 10.1007/s12325-023-02685-w

Shimizu-Motohashi Y, Chiba E, Mizuno K, Yajima H, Ishiyama A, Takeshita E, et al. Muscle impairment in MRI affect variability in treatment response to nusinersen in patients with spinal muscular atrophy type 2 and 3: a retrospective cohort study. Brain Dev. (2023) 45:161–70. doi: 10.1016/j.braindev.2022.11.002

Cintas P. Current treatments of spinal muscular atrophy in adults. Rev Neurol. (2023) 179:106–13. doi: 10.1016/j.neurol.2022.12.003

Awano T, Kim J-K, Monani UR. Spinal muscular atrophy: journeying from bench to bedside. Neurotherapeutics. (2014) 11:786–95. doi: 10.1007/s13311-014-0293-y

Oskoui M, Day JW, Deconinck N, Mazzone ES, Nascimento A, Saito K, et al. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J Neurol. (2023) 270:2531–46. doi: 10.1007/s00415-023-11560-1

Belter L, Peterson I, Jarecki J. Evaluating perceived fatigue within an adult spinal muscular atrophy population. Neurol Ther. (2023) 12:2161–75. doi: 10.1007/s40120-023-00552-y

Souza PVS, Pinto WBVR, Ricarte A, Badia BML, Seneor DD, Teixeira DT, et al. Clinical and radiological profile of patients with spinal muscular atrophy type 4. Eur J Neurol. (2021) 28:609–19. doi: 10.1111/ene.14587

Valsecchi V, Anzilotti S, Serani A, Laudati G, Brancaccio P, Guida N, et al. miR-206 reduces the severity of motor neuron degeneration in the facial nuclei of the brainstem in a mouse model of SMA. Mol Ther. (2020) 28:1154–66. doi: 10.1016/j.ymthe.2020.01.013

Butchbach MER. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): implications for spinal muscular atrophy phenotype and therapeutics development. Int J Mol Sci. (2021) 22:7896. doi: 10.3390/ijms22157896

Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol. (2021) 22:589–607. doi: 10.1038/s41580-021-00382-6

Singh NN, O’Leary CA, Eich T, Moss WN, Singh RN. Structural context of a critical exon of spinal muscular atrophy gene. Front Mol Biosci. (2022) 9:928581. doi: 10.3389/fmolb.2022.928581

Navarrete-Opazo A, Garrison S, Waite M. Molecular biomarkers for spinal muscular atrophy: a systematic review. Neurol Clin Pract. (2021) 11:e524–36. doi: 10.1212/CPJ.0000000000000872

Iyer SR, Shah SB, Lovering RM. The neuromuscular junction: roles in aging and neuromuscular disease. Int J Mol Sci. (2021) 22:8058. doi: 10.3390/ijms22158058

Courtney NL, Mole AJ, Thomson AK, Murray LM. Reduced P53 levels ameliorate neuromuscular junction loss without affecting motor neuron pathology in a mouse model of spinal muscular atrophy. Cell Death Dis. (2019) 10:515. doi: 10.1038/s41419-019-1727-6

Strauss KA, Farrar MA, Muntoni F, Saito K, Mendell JR, Servais L, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the phase III SPR1NT trial. Nat Med. (2022) 28:1381–9. doi: 10.1038/s41591-022-01866-4

Niba ETE, Nishio H, Wijaya YOS, Lai PS, Tozawa T, Chiyonobu T, et al. Clinical phenotypes of spinal muscular atrophy patients with hybrid SMN gene. Brain Dev. (2021) 43:294–302. doi: 10.1016/j.braindev.2020.09.005

Milligan JN, Larson JL, Filipovic-Sadic S, Laosinchai-Wolf W, Huang Y-W, Ko T-M, et al. Multisite evaluation and validation of a sensitive diagnostic and screening system for spinal muscular atrophy that reports SMN1 and SMN2 copy number, along with disease modifier and gene duplication variants. J Mol Diagn. (2021) 23:753–64. doi: 10.1016/j.jmoldx.2021.03.004

Mercuri E, Sumner CJ, Muntoni F, Darras BT, Finkel RS. Spinal muscular atrophy. Nat Rev Dis Prim. (2022) 8:52. doi: 10.1038/s41572-022-00380-8

Faravelli I, Meneri M, Saccomanno D, Velardo D, Abati E, Gagliardi D, et al. Nusinersen treatment and cerebrospinal fluid neurofilaments: an explorative study on spinal muscular atrophy type 3 patients. J Cell Mol Med. (2020) 24:3034–9. doi: 10.1111/jcmm.14939

28 Yang Y, Xia C, Song X, Tang X, Nie X, Xu W, et al. Application of a multiplex ligation-dependent probe amplification-based next-generation sequencing approach for the detection of pathogenesis of Duchenne muscular dystrophy and spinal muscular atrophy caused by copy number aberrations. Mol Neurobiol. (2023) 61:200–11. doi: 10.1007/s12035-023-03572-9

MAR DS, Brighente SF, Massignan A, Tenório RB, Makariewicz LL, Moreira AL, et al. Accuracy of muscle fasciculations for the diagnosis of later-onset spinal muscle atrophy. Neuromuscul Disord. (2022) 32:763–8. doi: 10.1016/j.nmd.2022.07.395

Waldrop MA, Elsheikh BH. Spinal muscular atrophy in the treatment era. Neurol Clin. (2020) 38:505–18. doi: 10.1016/j.ncl.2020.03.002

Shih STF, Farrar MA, Wiley V, Chambers G. Newborn screening for spinal muscular atrophy with disease-modifying therapies: a cost-effectiveness analysis. J Neurol Neurosurg Psychiatry. (2021) 92:1296–304. doi: 10.1136/jnnp-2021-326344

Zhang J, Wang Y, Ma D, Sun Y, Li Y, Yang P, et al. Carrier screening and prenatal diagnosis for spinal muscular atrophy in 13,069 Chinese pregnant women. J Mol Diagn. (2020) 22:817–22. doi: 10.1016/j.jmoldx.2020.03.001

Carré A, Empey C. Review of spinal muscular atrophy (SMA) for prenatal and pediatric genetic counselors. J Genet Couns. (2016) 25:32–43. doi: 10.1007/s10897-015-9859-z

Pera MC, Coratti G, Berti B, D’Amico A, Sframeli M, Albamonte E, et al. Diagnostic journey in spinal muscular atrophy: is it still an odyssey? PLoS One. (2020) 15:e0230677. doi: 10.1371/journal.pone.023067

Freigang M, Wurster CD, Hagenacker T, Stolte B, Weiler M, Kamm C, et al. Serum creatine kinase and creatinine in adult spinal muscular atrophy under nusinersen treatment. Ann Clin Transl Neurol. (2021) 8:1049–63. doi: 10.1002/acn3.51340

Hoy SM. Nusinersen: first global approval. Drugs.2017;77:473–9 Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophywith nusinersen: a phase 2, open-label, dose-escalation study.Lancet. 2016;388(10063):3017–26. https:// doi. org/ 10. 1016/S0140- 6736(16) 31408. (Epub 20161207. PubMed PMID:27939059).

Acsadi G, Crawford TO, Muller-Felber W, Shieh PB, Richardson R, Natarajan N, et al. Safety and efficacy of nusinersen in spinal muscular atrophy: the EMBRACE study. Muscle Nerve.2021;63(5):668–77. https:// doi. org/ 10. 1002/ mus. 27187. (Epub 20210216. PubMed PMID: 33501671; PubMed Central PMCID: PMCPMC8248061).

Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625–35. https:// doi. org/ 10. 1056/ NEJMo a1710 504. (PubMed PMID: 2944366

Markati T, Fisher G, Ramdas S, Servais L. Risdiplam: an investigational survival motor neuron 2 (SMN2) splicing modifier for spinal muscular atrophy (SMA). Expert Opin Investig Drugs. 2022;31(5):451–61. https:// doi. org/ 10. 1080/ 13543 784.2022. 20568 36. (Epub 20220411. PubMed PMID: 35316106).

Label E. Risdiplam 2024 [cited 2024 11/02/2024]. https://www. ema. europa. eu/ en/ medic ines/ human/ EPAR/ evrys di.Accessed 11/2/2024.

Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, et al. Risdiplam in type 1 spinal muscular atrophy. N Engl J Med. 2021;384(10):915–23. https:// doi. org/ 10. 1056/ NEJMo a2009 965. (Epub 20210224. PubMed PMID: 33626251).

Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, Rose K, Xiong H, Zanoteli E, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N Engl J Med. 2021;385(5):427–35. https:// doi. org/ 10. 1056/ NEJMo a2102 047.(PubMed PMID: 34320287).

Blair HA. Onasemnogene Abeparvovec: a review in spinal muscular atrophy. CNS Drugs. 2022;36(9):995–1005. 34. Chand DH, Mitchell S, Sun R, LaMarca N, Reyna SP, Sutter T.Safety of onasemnogene abeparvovec for patients with spinal muscular atrophy 8.5 kg or heavier in a global managed access program. Pediatr Neurol. 2022;132:27–32. https:// doi. org/ 10. 1016/j. pedia trneu rol. 2022. 05. 001. (Epub 20220510. PubMed PMID: 35605311).

Servais L, Day JW, De Vivo DC, Kirschner J, Mercuri E, Muntoni F, et al. Real-world outcomes in patients with spinal muscular atrophy treated with onasemnogene abeparvovec monotherapy: findings from the RESTORE registry. J Neuromuscul Dis.2024. https:// doi. org/ 10. 3233/ JND- 230122. (Epub 20240118. PubMed PMID: 38250783).

Yang D, Ruan Y, Chen Y. Safety and efficacy of gene therapy with onasemnogene abeparvovec in the treatment of spinal muscular atrophy: a systematic review and meta-analysis. J Paediatr Child Health. 2023;59(3):431–8. https:// doi. org/ 10. 1111/ jpc. 16340. (Epub 20230201. PubMed PMID: 36722610).

Zhuang W, Lu M, Wu Y, Chen Z, Wang M, Wang X, et al. Safety concerns with nusinersen, risdiplam, and onasemnogene abeparvovec in spinal muscular atrophy: a real-world pharmacovigilance study. Clin Drug Investig. 2023;43(12):949–62. https:// doi. org/ 10. 1007/ s40261- 023- 01320-4. (Epub 20231123. PubMed PMID: 37995087).

Sithara Ramdas et.al.,(2024)/ Treatment Options in Spinal Muscular Atrophy: A Pragmatic Approach for Clinicians,/ Drugs https://doi.org/10.1007/s40265-024-02051-2

Waldrop, Megan A. "Clinical decision making around commercial use of gene and genetic therapies for spinal muscular atrophy." Neurotherapeutics 21.4 (2024): e00437.

Li, J.J.; Lin, X.; Tang, C.; Lu, Y.Q.; Hu, X.; Zuo, E.; Li, H.; Ying, W.; Sun, Y.; Lai, L.L.; et al. Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. Natl. Sci. Rev. 2020, 7, 92–101.[CrossRef]

Aleksei S. Ponomarev et,al(2024),/ Emerging Gene Therapy Approaches in the Management of Spinal Muscular Atrophy (SMA): An Overview of Clinical Trials and Patent Landscape/ Int. J. Mol. Sci. 2023, 24, 13743. https://doi.org/10.3390/ijms241813743

Downloads

Published

2025-03-08

How to Cite

1.
Sonker P, Tiwari M, Sharma N, Singh N, Neha N. Spinal Muscular Atrophy: A Multidisciplinary Approach to Diagnosis, Emerging Therapies Recent and Advance Gene Therapy, and Rehabilitation. J Neonatal Surg [Internet]. 2025Mar.8 [cited 2025Mar.20];14(5S):125-33. Available from: https://jneonatalsurg.com/index.php/jns/article/view/1995