A review on Oxidative Stress and Nano-medicine: Emerging Strategies for Disease Management
Keywords:
Nanoparticles, Oxidative stress, Nanozymes, Antioxidant therapy, Cancer nanomedicine, Biocompatibility, Toxicity.Abstract
Oxidative stress results from an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense system, contributing to the onset and progression of several chronic and degenerative diseases. Nanoparticles (NPs), owing to their unique physicochemical properties, have emerged as both modulators of oxidative stress and therapeutic agents. Metal and metal oxide nanoparticles such as manganese, selenium, and zinc exhibit intrinsic antioxidant activities by mimicking enzymatic systems like superoxide dismutase and catalase, while green-synthesized nanoparticles provide synergistic bioactivity through plant-derived compounds. These "nanozymes" not only scavenge ROS but also enhance bioavailability, stability, and targeted delivery of antioxidants. This review discusses the dual role of nanoparticles in inducing and counteracting oxidative stress, the mechanisms of ROS generation, organelle-specific damage, and biological consequences including DNA damage, inflammation, and apoptosis. Furthermore, we highlight the therapeutic applications of nanoparticles in neurodegenerative disorders, cancer, diabetes, and reproductive dysfunctions, along with their challenges related to toxicity, dose-dependent effects, and biocompatibility. By integrating nanotechnology with redox biology, nanoparticles represent a promising yet complex platform for combating oxidative stress–mediated diseases, requiring careful optimization to balance efficacy and safety.
Downloads
References
Frahtia, A., Derouiche, S. (2025). Review study on the oxidative stress and antibiotic use risks in broiler chickens: role of plant extracts. Asian J. Pharmacogn. 9(1),1-11
Boulaares, I., Derouiche, S., Guemari, I.Y. (2024). Protective effect of ObE against Doxorubicin-Induced immunosuppression and Cardiotoxicity in Rats. Research J. Pharm. and Tech.; 17(4),1839-1843
Chetehouna, S., Derouiche, S., Reggami, Y., Boulaares, I. (2024). Sonchus maritimus Extract-Loaded Niosomes Bioconjugated by Linoleic Acid in Hepatic Encephalopathy Induced by High-Fructose Diet in Albino Wistar Rats. Archives of Razi Institute. 79(1),194-205. DOI: 10.32592/ARI.2024.79.1.194
Chetehouna, S., Derouiche, S., Boulaares, I., Réggami, Y. (2024). Phytochemical profile, anti-inflammatory analysis and cytotoxic activity of SmE-SeNPs against breast (MCF-7) cancer cells. Biocatalysis and Agricultural Biotechnology. 57, 103122.
Derouiche, S., Bouchoul, S., Bouchoul, M., Bya, L., Abdemalek, D. (2022). Eco-friendly Phytosynthesis of Copper Nanoparticles Using Medicgo sativa Extract: A Biological Acticity and Acute Toxicity Evaluation. World J Environ Biosci, 11, 4: 9-15.
Atoussi, O., Chetehouna S, Derouiche S. (2020). Biological properties and Acute Toxicity Study of Copper oxide nanoparticles prepared by aqueous leaves extract of Portulaca oleracea (L). Asian J. Pharm. Res. 10(2):89-94.
Wang, X., Song, X., Feng W, Chang M, Yang J, Chen Y. (2025). Advanced Nanomedicines for Treating Refractory Inflammation-Related Diseases. Nanomicro Lett. 17(1),323. doi: 10.1007/s40820-025-01829-7.
Padmanaban, S., Pully, D., Samrot, A.V., Gosu, V., Sadasivam N, Park IK, Radhakrishnan K, Kim DK. (2023). Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel).12(7),1405. doi: 10.3390/antiox12071405.
Frahtia, A., Derouiche, S., Niemann J. (2025). Novel and Facile Green Synthesis of Copper Nanoparticles Using Aqueous Extract of Phragmites australis Leaves and Evaluation of their Antioxidant, Antihemolytic, Anti-inflammatory, and Anticancer Effects. Journal of Applied Biotechnology Reports,. 12(1), 1545-1553.
Pooja, G., S. Shweta, and P. Patel, (2025). Oxidative stress and free radicals in disease pathogenesis: a review. Discover Medicine,. 2(1): p. 104.
Samrot AV., et al., (2022). Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties—a review. Oxygen,. 2(4), 591-604.
Velumani, K, et al., (2025). Functionalized Zinc Oxide Nanoparticles Conjugated With Artemisinin Against Luperox‐Induced Oxidative Stress and Their Impact on Antioxidant Defense Mechanism. Journal of Biochemical and Molecular Toxicology, 39(7), e70380.
Horie M. and Y. Tabei,( 2021). Role of oxidative stress in nanoparticles toxicity. Free radical research,. 55(4): p. 331-342.
Batir-Marin, D., et al., (2025). Exploring oxidative stress mechanisms of nanoparticles using Zebrafish (Danio rerio): toxicological and pharmaceutical insights. Antioxidants,; 14(4): p. 489.
Kruszewski, M. and A. Grzelak, (2021). Nanoparticle toxicity and reactive species: An overview. Toxicology. 2025, 11-21.
Kessler, A., et al., (2022). Reactive oxygen species formed by metal and metal oxide nanoparticles in physiological media—a review of reactions of importance to nanotoxicity and proposal for categorization. Nanomaterials,; 12(11), 1922.
Zhang, T., et al., (2020). Oxidative stress and redox modifications in nanomaterial–cellular interactions, in Interaction of Nanomaterials with the Immune System, Springer. p. 127-148.
Yu, Z., et al., (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale research letters. 15(1), 115.
Liu, N. and M. Tang, Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. Journal of Applied Toxicology, 2020; 40(1): p. 16-36.
Patrón-Romero, L., et al., (2022). Mitochondrial dysfunction induced by zinc oxide nanoparticles. Crystals. 12(8), 1089.
Singh, A., et al., (2020). Nanoparticles: An activator of oxidative stress, in Toxicology of nanoparticles: Insights from Drosophila, Springer.2020,89-106.
Maku, A.M., et al., (2024). Oxidative Stress and Inflammation Induced by Nanoparticles, in Environmental Nanotoxicology: Combatting the Minute Contaminants, Springer. 2024: 121-133.
Manke, A., L. Wang, and Y. Rojanasakul, (2013). Mechanisms of nanoparticle‐induced oxidative stress and toxicity. BioMed research international,. 2013(1), 942916.
Thao, N. T. M., Do, H. D. K., Nam, N. N., Tran, N. K. S., Dan, T. T., & Trinh, K. T. L. (2023). Antioxidant nanozymes: mechanisms, activity manipulation, and applications. Micromachines, 14(5), 1017.
Satpathy, S., Panigrahi, L. L., Samal, P., Sahoo, K. K., & Arakha, M. (2024). Biogenic synthesis of selenium nanoparticles from Nyctanthes arbor-tristis L. and evaluation of their antimicrobial, antioxidant and photocatalytic efficacy. Heliyon, 10(12).
Min, Y., Suminda, G. G. D., Heo, Y., Kim, M., Ghosh, M., & Son, Y. O. (2023). Metal-based nanoparticles and their relevant consequences on cytotoxicity cascade and induced oxidative stress. Antioxidants, 12(3), 703.
Boulaares, I., Derouiche, S., & Niemann, J. (2024). Greenly Synthesized Manganese Oxide Nanoparticles (MnO NPs) In Tumor Therapy: A Narrative Review. Archives of Razi Institute, 79(6), 1135.
Zhang, T., Qi, M., Wu, Q., Xiang, P., Tang, D., & Li, Q. (2023). Recent research progress on the synthesis and biological effects of selenium nanoparticles. Frontiers in nutrition, 10, 1183487.
Liu, P., Long, H., Cheng, H., Liang, M., Liu, Z., Han, Z., ... & He, S. (2023). Highly-efficient synthesis of biogenic selenium nanoparticles by Bacillus paramycoides and their antibacterial and antioxidant activities. Frontiers in Bioengineering and Biotechnology, 11, 1227619.
Islam, B., Samir, D., Sara, C., & Janetta, N. (2024). Ocimum basilicum L. leaves extract-mediated green synthesis of MnO NPs: Phytochemical profile, characterization, catalytic and thrombolytic activities. Results in Surfaces and Interfaces, 17, 100284.
Chetehouna, S., Derouiche, S., & Réggami, Y. (2024). In Vitro Antioxidant and Antidiabetic properties of leaves aqueous extract of Sonchus maritimus. Int J Chem Biochem Sci, 25(19), 1-8.
Kasote, D. M., Lee, J. H. J., Jayaprakasha, G. K., & Patil, B. S. (2021). Manganese oxide nanoparticles as safer seed priming agent to improve chlorophyll and antioxidant profiles in watermelon seedlings. Nanomaterials. 2021; 11 (4): 1016.
Khan, A. U., Khan, A. A., Malik, N., Her, J., Gupta, M., Panda, S., ... & Alam, M. (2025). Synthesis of Cu4O3 nanoparticles using pumpkin seed extract: Optimization, antimicrobial, and cytotoxicity studies. Nanotechnology Reviews, 14(1), 20250203.
Abdelaziz, H. T., Seif Mohamed, E. M., Younis, S. K., Ahmed, N., Michaeel, M. N., Abu-Hussien, S. H., ... & El-Sayed, S. M. (2025). Selenium nanoparticle loaded on PVA/chitosan biofilm synthesized from orange peels: antimicrobial and antioxidant properties for plum preservation. BMC chemistry, 19(1), 245.
Al-Darwesh, M. Y., Manai, M., Chebbi, H., & Klein, A. (2025). Green Synthesis of Chitosan-Coated Selenium Nanoparticles for Paclitaxel Delivery. Nanomaterials, 15(16), 1276.
Satti, S., Naz, S., Khan, R. U., Alrefaei, A. F., Almutairi, M., Momand, N. K., & Ibiwoye, D. I. (2025). Comparative effects of selenium nanoparticles and sodium selenite on selenium bioaccumulation in quail tissues and its transfer to progeny. Journal of Applied Animal Research, 53(1), 2497329.
Darwish, M. S., Gomaa, M. S., Elsherbiny, E. S., & Mostafa, M. S. (2023). Angiotensin-converting enzyme (ACE-1) inhibitory and antioxidant activities of probiotic yogurt enriched with rice bran. Egyptian Journal of Chemistry, 66(12), 353-365.
Boulaares, I., Derouiche, S. (2025). A review on the therapeutic effect of phytosynthesized manganese oxide nanoparticles for the management of microbial infections. Journal of Microbiology and Infectious Diseases, 14(4), 146-146.
Ashok.A, Andrabi.S.S, Mansoor.S, Kuang.Y, Kwon.B.K, Labhasetwar.V, (2022). Antioxidant Therapy in Oxidative Stress Induced Neurodegenerative Diseases: Role of Nanoparticle Based Drug Delivery Systems in Clinical Translation. Antioxidants. 11(2022) 408.
Patel.K.D, Keskin-Erdogan.Z, Sawadkar.P, Nik Sharifulden.N.S.A, Shannon.M.R, Patel.M, Silva,L.B., Patel.R, Chau.D.Y.S, Knowles.J.C, Perriman.A.W, Kim.H.W, (2024). Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. Nanoscale Horiz. 9(10) 1630–1682.
Liu.J, Li.Y, Chen.S, Lin.Y, Lai.H, Chen.B, Chen.T, (2020). Biomedical Application of Reactive Oxygen Species–Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Front. Chem. 8(2020) 838.
Chetehouna.S, Derouiche.S, Atoussi.O, (2024). Identification of New Alkaloids from Algerian Purslane by HPLC-QTOF-MS and Beneficial Effect of Purslane Enriched with Zinc on Experimental Alzheimer Disease in Rats. Curr.Trends. Biotechnol. Pharm. 18(1) 1595–1607.
Das.B, Patel.P, Nandi.A, Verma.S.K, (2021). Chapter 18 - Nanomedicines and phytochemicals targeting Alzheimer’s disease. In M. R. B. T.-M. D. and N. de Oliveira (Ed.), Mitochondrial Dysfunction and Nanotherapeutics (2021) 477–498. Academic Press.
Chetehouna.S, Atoussi.O, Derouiche.S, (2025). A review of the pathophysiology of Alzheimer disease and their therapeutic strategies. Acta. Pharma. Reports. 4(1) 43–47.
Jiang.G, Xu.Q, Xie.J, You.Y., Cai.L, Zhao.L, Tang.X, Yang.H, Yong.Y, (2024). Emerging nanozymes in neurological disorder therapeutics: bridging oxidoreductase mimicry and antioxidant chemistry. Adv. Funct. Mater. 34(39) 2405190.
Obulesu.M, (2020). Redox nanoparticles : the corner stones in the development of Parkinson ’ s disease therapeutics. In Parkinson’s Disease Therapeutics ISBN. Academic. Press. 65–74.
Hussein.R.M, Kandeil.M.A, SolimanH.M, El-Shahawy.A.A.G, (2024). Effect of quercetin-loaded poly (lactic-co-glycolic) acid nanoparticles on lipopolysaccharide-induced memory decline, oxidative stress, amyloidogenesis, neurotransmission, and Nrf2/HO-1 expression. Heliyon. 10(1) e23527.
Derouiche.S, Frahtia.A, Chetehouna.S, Boulaares.I, (2025). A Review on Nanoparticles-Based Biosensors : Bridging Innovation , Medical , and Safety Challenges. Dandao Xuebao/J. Ballist. 37(1) 231–243.
Lafi.Z, Asha.S, Asha.S.Y, (2025). Carbon-based nanotechnology for Parkinson’s disease: diagnostic and therapeutic innovations. Nanomedicine. 20(16) 2023–2041.
Kierzkowska-Pawlak.H. (2022). Nanotechnology Based Therapeutics in ROS Induced Cancer. In Handbook of oxidative stress in cancer: therapeutic aspects. Springer Nature.
Tambyraja.A.L, (2022). Emerging Role of Redox Active Nanoceria in Cancer Therapeutics via Oxidative Stress. In Handbook of oxidative stress in cancer: therapeutic aspects. Springer Nature.
Chetehouna.S, Derouiche.S, Boulaares.I, Réggami.Y, (2024). Phytochemical profile, anti-inflammatory analysis and cytotoxic activity of SmE-SeNPs against breast (MCF-7) cancer cells. Biocatal. Agric. Biotechnol. 57(2024) 1–8.
Bhattacharjee.A, Basu.A, Sen.T, Biswas.J, Bhattacharya.S, (2017). Nano-Se as a novel candidate in the management of oxidative stress related disorders and cancer. The Nucleus. 60(2)137–145.
Lin.L.-S, Wang.J.-F, Song.J, Liu.Y, Zhu.G, Dai.Y, Shen.Z, Tian.R, Song.J, Wang.Z, Tang.W, Yu.G, Zhou.Z, Yang.Z, Huang.T, Niu.G, Yang.H.-H, Chen.Z.-Y, Chen.X, (2019). Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics. 9(24), 7200–7209.
Murali.M, Kalegowda.N, Gowtham.H.G, Ansari.M.A, Alomary.M.N, Alghamdi.S, Shilpa.N, Singh.S.B, Thriveni.M.C, Aiyaz.M, Angaswamy.N, Lakshmidevi.N, Adil.S.F, Hatshan.M.R, Amruthesh.K.N. (2021). Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics.13(10) 1662.
Frahtia A, Derouiche S, Niemann J. GC-MS Analysis and Quantification of Some Secondary Metabolites of the Algerian Phragmites australis Leaf Extract and Their Biological Activities. Current Trends in Biotechnology and Pharmacy. 2024; 18(4) 2024-2035,
Li.J, Liu.Y, Geng.K, Lu.X, Shen.X, Guo.Q, (2025). ROS-Responsive Nanoparticles with Antioxidative Effect for the treatment of Diabetic Retinopathy. Biomater. Sci., Polym. Ed. 36(4) 440–461.
Yi.L, Yu.L, Chen.S, Huang.D, (2024). The regulatory mechanisms of cerium oxide nanoparticles in oxidative stress and emerging applications in refractory wound. Front. pharmacol. 15(8) 1–12.
Al Hunduwan.K, El Hamidy.S. M. (2024). Effect of green zinc oxide nanocomposite with fenugreek seeds extract on streptozotocin-induced diabetic rat. Egypt. Acad. J. Biol. Sci. D Histol. Histochem., 16(2) 163–183.
Liu.W, Liu.H, Zhang.S, Hao.H, Meng.F, Ma.W, Guo.Z, Jiang.S, Shang.X, (2024). Silica nanoparticles cause ovarian dysfunction and fertility decrease in mice via oxidative stress-activated autophagy and apoptosis. Ecotoxicol. Environ. Saf. 285 (2024) 117049.
Lakshmanan.M, Saini.M, Nune.M, (2024). Exploring the innovative application of cerium oxide nanoparticles for addressing oxidative stress in ovarian tissue regeneration. J. Ovarian Res. 17(1) 1–20.
Abdallah.A.B.E, El-Ghannam. M.A, Hasan.A.A, Mohammad.L.G, Mesalam. N.M, Alsayed. R.M, Selenium nanoparticles modulate steroidogenesis-related genes and improve ovarian functions via regulating androgen receptors expression in polycystic ovary syndrome rat model. Biol. Trace Elem. Res. 201(12) 5721–5733.
Guemari. I Y, Boulaares. I, Derouiche. S, Study of the Role of Oxidative Stress in Pathophysiology of Cardiovascular Diseases. Collect. J. Cardiovasc. Med. 1 (2024) ART0014. https://doi.org/10.70107/collectjcardiovascmed.ART0014.
Atoussi. O, Chetehouna. S, Boulaares. I, Guemari I Y, Derouiche. S, Analysis of blood pressure, lipid profile and hematological biomarkers in men addicted to tobacco chewing. Res. J. Pharmacol. Pharmacodyn. 13 (2021) 1-4. https://doi.org/10.5958/2321-5836.2021.00001.X
Castañeda-Arriaga. R, Pérez-González. A, Reina. M, Alvarez-Idaboy. J R l, Galano. A, Comprehensive investigation of the antioxidant and pro-oxidant effects of phenolic compounds: A double-edged sword in the context of oxidative stress? J. Phys. Chem. B 122 (2018) 6198-6214. https://doi.org/10.1021/acs.jpcb.8b03500.
Podder. S, Ghosh. C K, Das. A, Hardy. J G, Light-responsive nanomaterials with pro-oxidant and anti-oxidant activity. Emergent Mater. 5 (2022) 455-475. https://doi.org/10.1007/s42247-022-00361-3.
Tiwari. D K, Jin. T, Behari. J, Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol. Mech. Methods 21 (2011) 13-24. https://doi.org/10.3109/15376516.2010.529184.
Samrot. A V, Ram Singh. S P, Deenadhayalan. R, Rajesh V V, Padmanaban. S, Radhakrishnan. K, Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties—a review. Oxygen 2 (2022) 591-604. https://doi.org/10.3390/oxygen2040039.
Graham. U M, Jacobs. G, Yokel. R A, Davis. B H, Dozier. A K, Birch. M E, Tseng. M T, Oberdörster. G, Elder. A, DeLouise. L, From dose to response: in vivo nanoparticle processing and potential toxicity, Modelling the toxicity of nanoparticles, Advances in Experimental Medicine and Biology2017, pp. 71-100. https://doi.org/10.1007/978-3-319-47754-1_4.
Najahi-Missaoui. W, Arnold. R D, Cummings. B S, Safe nanoparticles: are we there yet? Int. J. Mol. Sci. 22 (2020) 385. https://doi.org/10.3390/ijms22010385.
Hofmann-Amtenbrink. M, Grainger. D W, Hofmann. H, Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine: Nanotechnology, Biology and Medicine 11 (2015) 1689-1694. https://doi.org/10.1016/j.nano.2015.05.005.
Li. X, Wang. L, Fan. Y, Feng. Q, Cui F-z, Biocompatibility and toxicity of nanoparticles and nanotubes. J. Nanomater. 2012 (2012) 548389. https://doi.org/10.1155/2012/548389.
Wolfram. J, Zhu. M, Yang. Y, Shen. J, Gentile. E, Paolino. D, Fresta. M, Nie. G, Chen. C, Shen. H, Ferrari. M, Zhao. Y, Safety of nanoparticles in medicine. Curr. Drug Targets 16 (2015) 1671-1681.
Gautam. A, van Veggel. F C, Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. J. Mater. Chem. B 1 (2013) 5186-5200. https://doi.org/ 10.1039/c3tb20738b.
Witika. B A, Makoni. P A, Matafwali. S K, Chabalenge. B, Mwila. C, Kalungia. A C, Nkanga. C I, Bapolisi. A M, Walker. R B, Biocompatibility of biomaterials for nanoencapsulation: current approaches. Nanomaterials 10 (2020) 1649. https://doi.org/10.3390/nano10091649.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.