Review On Vitrification and Conventional Freezing Method in Sperm Collection, Freezing and Cryopreservation

Authors

  • Jyoti Sarwan
  • Ehtasham abid
  • Priya Sharma
  • Munnangi Raju
  • Vinguno Nakhro
  • Sunil Kumar Reddy Kunduru
  • Debjit Dhar Chowdhury
  • Pallavi Sharma
  • Dipneet Kaur

DOI:

https://doi.org/10.63682/jns.v14i32S.8301

Keywords:

sperm cryopreservation, conventional freezing, vitrification, motility, DNA integrity, cryoprotectants, assisted reproductive technologies, fertility preservation, oxidative stress, ART

Abstract

The storage of sample sperm through freezing serves as a starting method for both animal breeding and reproductive medicine since it creates access to preserved specimens at any time. This review compares two primary sperm cryopreservation methods: conventional freezing and vitrification. The freezing technique together with its slow programmable freezing (SPF) variant preserves sperm quality by permitting cells to decrease internal ice crystals through extended temperature adjustments taking 2–4 hours despite possible cellular damage. Sperm cells retain top quality when vitrification works due to its fast-freezing method that stops ice crystals from developing. High success rates during post-thaw tests and DNA protection along with reduced oxidative damage are achieved through vitrification by maintaining exact control over cryoprotectant use and cooling speed regulations yet technical requirements and elevated costs emerge as major obstacles. The ART clinics use conventional freezing for storage because it remains the cost-efficient option that allows easy specimen access yet it causes motility reduction in comparison with vitrification. The combination of standard freezing techniques with vitrification has become essential because existing protocols work well in freezing but vitrification leads to superior ART outcomes. The development of both vitrification method protocols and cryoprotectant-free freezing techniques along with genetic modification methods is necessary to boost sperm storage capabilities.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Semen cryopreservation. (n.d.). Yale Medicine. https://www.yalemedicine.org/clinical-keywords/semen-cryopreservation

Sperm banking. (2021, November 2). Johns Hopkins Medicine. https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/sperm-banking

Wikipedia contributors. (2024, January 5). Cryopreservation of testicular tissue. Wikipedia. https://en.wikipedia.org/wiki/Cryopreservation_of_testicular_tissue

Wikipedia contributors. (2025a, February 2). Cryobiology. Wikipedia. https://en.wikipedia.org/wiki/Cryobiology

Wikipedia contributors. (2025b, February 6). Cryopreservation. Wikipedia. https://en.wikipedia.org/wiki/Cryopreservation

Wikipedia contributors. (2025c, February 27). Semen cryopreservation. Wikipedia. https://en.wikipedia.org/wiki/Semen_cryopreservation

Mocé, E., Fajardo, A. J., Graham, J. K., Centro de Tecnología Animal-Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), & Department of Biomedical Sciences, Colorado State University. (2016). HUMAN SPERM CRYOPRESERVATION. In EMJ EUROPEAN MEDICAL JOURNAL (pp. 86–91). https://www.emjreviews.com/wp-content/uploads/2018/01/Human-Sperm-Cryopreservation.pdf?utm_source=chatgpt.com

Pariz, J. R., Monteiro, R. a. C., & Hallak, J. (n.d.). Long-term sperm cryopreservation does not affect post-thaw survival rates. JBRA. https://doi.org/10.5935/1518-0557.20190066

Ozimic, S., Ban-Frangez, H., & Stimpfel, M. (2023). Sperm cryopreservation Today: Approaches, efficiency, and pitfalls. Current Issues in Molecular Biology, 45(6), 4716–4734. https://doi.org/10.3390/cimb45060300

Xie, Q., Jiang, X., Zhao, M., Xie, Y., Fan, Y., Suo, L., & Kuang, Y. (2024). Effect of freezing and thawing on ejaculated sperm and subsequent pregnancy and neonatal outcomes in IVF. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1408662

Pariz, J. R., Monteiro, R. a. C., & Hallak, J. (2020b). Long-term sperm cryopreservation does not affect post-thaw survival rates. JBRA. https://doi.org/10.5935/1518-0557.20190066

Hu, H., Liu, R., Shi, X., Ji, G., Zhang, J., Zhang, H., Wang, P., Sun, Z., Xiao, G., & Li, M. (2019). Comparison of rapid freezing and vitrification for human sperm cryopreservation using trehalose as a cryoprotective agent. Open Journal of Obstetrics and Gynecology, 09(10), 1407–1418. https://doi.org/10.4236/ojog.2019.910136

Tao, Y., Sanger, E., Saewu, A., & Leveille, M.-C. (2020). Human sperm vitrification: the state of the art. In Reproductive Biology and Endocrinology. https://doi.org/10.1186/s12958-020-00580-5

Schulz, M., Risopatrón, J., Uribe, P., Isachenko, E., Isachenko, V., & Sánchez, R. (2020). Human sperm vitrification: A scientific report. Andrology, 8(6), 1642–1650. https://doi.org/10.1111/andr.12847

Huang, C., Tang, Y., Hu, J., Zhou, W., Huang, Z., Luo, X., Li, Z., & Zhu, W. (2022). Update on techniques for cryopreservation of human spermatozoa. Asian Journal of Andrology, 24(6), 563–569. https://doi.org/10.4103/aja20229

Tao, Y., Sanger, E., Saewu, A., & Leveille, M.-C. (2020b). Human sperm vitrification: the state of the art. In Reproductive Biology and Endocrinology. https://doi.org/10.1186/s12958-020-00580-5

Karthikeyan, M., Arakkal, D., Mangalaraj, A., & Kamath, M. (2019). Comparison of conventional slow freeze versus permeable cryoprotectant-free vitrification of abnormal semen sample: A randomized controlled trial. Journal of Human Reproductive Sciences, 12(2), 150. https://doi.org/10.4103/jhrs.jhrs_154_18

Hungerford, A., Bakos, H. W., & Aitken, R. J. (2022). Sperm cryopreservation: current status and future developments. Reproduction Fertility and Development, 35(3), 265–281. https://doi.org/10.1071/rd22219

Suo, J., Wang, J., Zheng, Y., Xiao, F., Li, R., Huang, F., Niu, P., Zhu, W., Du, X., He, J., Gao, Q., & Khan, A. (2024). Recent advances in cryotolerance biomarkers for semen preservation in frozen form–A systematic review. PLoS ONE, 19(5), e0303567. https://doi.org/10.1371/journal.pone.0303567

Arctic Sperm Cryopreservation Medium. (n.d.). https://www.irvinesci.com/arctic-sperm-cryopreservation-medium.html

ADVANCEMENTS IN SPERM FREEZING: WHAT’S NEW IN MALE FERTILITY PRESERVATION. (n.d.). Urologist & Andrology Laboratory Located in Great Neck, NY | Bruce R Gilbert MD, PhD, PC. https://www.mensreproductivehealth.com/post/advancements-in-sperm-freezing-whats-new-in-male-fertility-preservation

Ozimic, S., Ban-Frangez, H., & Stimpfel, M. (2023b). Sperm cryopreservation Today: Approaches, efficiency, and pitfalls. Current Issues in Molecular Biology, 45(6), 4716–4734. https://doi.org/10.3390/cimb45060300

Panda, A., Judycka, S., Palińska-Żarska, K., Debernardis, R., Jarmołowicz, S., Jastrzębski, J. P., De Almeida, T. R., Błażejewski, M., Hliwa, P., Krejszeff, S., & Żarski, D. (2024b). Paternal-effect-genes revealed through sperm cryopreservation in Perca fluviatilis. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56971-w

Wang, M., Todorov, P., Wang, W., Isachenko, E., Rahimi, G., Mallmann, P., & Isachenko, V. (2022). Cryoprotectants-Free vitrification and Conventional freezing of human spermatozoa: A Comparative Transcript Profiling. International Journal of Molecular Sciences, 23(6), 3047. https://doi.org/10.3390/ijms23063047

AbdelHafez, F. F., Desai, N., Ali, M. Y., Sayed, E. T., & Abu-Alhassan, A. M. (2010). Antioxidants in assisted reproductive technologies: current trends and future perspectives. Middle East Fertility Society Journal, 15(3), 142–147.

Agarwal, A., & Durairajanayagam, D. (2014). Viruses and male reproductive health. Asian Journal of Andrology, 17(6), 948–957.

Agarwal, A., Mulgund, A., Hamada, A., & Chyatte, M. R. (2014). A unique view on male infertility around the globe. Reproductive Biology and Endocrinology, 12, 37.

Alvarez, J. G., & Storey, B. T. (1995). Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by lipid peroxidation. Biology of Reproduction, 53(3), 575–584.

Anifandis, G., Messini, C. I., Dafopoulos, K., & Messinis, I. E. (2019). AI in the IVF laboratory: the new frontier. Artificial Intelligence in Medicine, 96, 27–32.

Bilodeau, J. F., Blanchette, S., Gagnon, C., & Sirard, M. A. (2000). Thiols prevent H2O2- mediated loss of sperm motility in cryopreserved bull semen. Theriogenology, 53(1), 169– 180.

Cho, S. H., Chen, C. H., Tsai, F. S., & Li, Y. C. (2016). Microfluidic technologies for sperm research. Biomedical Microdevices, 18, 97.

Isachenko, V., Isachenko, E., Katkov, I. I., & Schulz, M. (2012). Vitrification of mammalian spermatozoa in the flat surface. Cryobiology, 65(2), 283–284.

Moraes, E. A., et al. (2018). Use of microfluidic devices in sperm sorting: a systematic review. Theriogenology, 113, 1–11.

Sheikholeslami, F., Heidari, B., Farifteh, F., & Iravanloo, G. (2019). Application of nanotechnology in cryopreservation and detection of pathogenic microorganisms in semen. Nano Reviews & Experiments, 10, 137–149.

Wang, Y., Yu, X., Wu, H., Wang, K., & Qing, S. (2019). Melatonin attenuates cryodamage in mouse spermatozoa during cryopreservation. Cryobiology, 88, 1–7.

Zinczuk, J., Gasparini, C., Pilastro, A., & Peretti, A. V. (2021). Potential of nanotechnology for gamete preservation and assisted reproductive technologies. Nanomedicine, 16(20), 1687–1701.

Zini, A., & Al-Hathal, N. (2011). Antioxidant therapy in male infertility: fact or fiction?

Asian Journal of Andrology, 13(3), 374–381.

Agarwal, A., Majzoub, A., Baskaran, S., Panner Selvam, M. K., Cho, C. L., Henkel, R., ... & Ombelet, W. (2020). Sperm DNA fragmentation: A critical assessment of clinical practice guidelines. The World Journal of Men's Health, 38(4), 412-420.

Anger, J. T., Gilbert, B. R., & Goldstein, M. (2003). Cryopreservation of sperm: indications, methods and results. The Journal of Urology, 170(4), 1079-1084.

Bailey, J. L., Bilodeau, J. F., & Cormier, N. (2000). Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. Journal of Andrology, 21(1), 1-7.

Bailey, J. L., Lessard, C., Jacques, J., Brèque, C., Dobrinski, I., Zeng, W., & Galantino- Homer, H. L. (2008). Cryopreservation of boar semen and its future importance to the industry. Theriogenology, 70(8), 1251-1259.

Calamera, J. C., Buffone, M. G., Doncel, G. F., Brugo-Olmedo, S., de Vincentiis, S., Calamera, M. M., ... & Acosta, A. A. (2010). Effect of thawing temperature on the motility recovery of cryopreserved human spermatozoa. Fertility and Sterility, 93(3), 789-794.

Chatdarong, K., Thuwanut, P., & Morrell, J. M. (2010). Single-layer centrifugation through colloid selects improved quality of epididymal cat sperm. Theriogenology, 73(9), 1284- 1292.

Comizzoli, P., Songsasen, N., & Wildt, D. E. (2012). Protecting and extending fertility for females of wild and endangered mammals. In Fertility Preservation (pp. 87-100). Springer, Boston, MA.

Cuevas-Uribe, R., & Tiersch, T. R. (2011). Estimation of fish sperm concentration by use of spectrophotometry. In Cryopreservation in Aquatic Species (pp. 162-200). World Aquaculture Society.

Di Santo, M., Tarozzi, N., Nadalini, M., & Borini, A. (2012). Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Advances in Urology, 2012, 854837.

Esteves, S. C., Sharma, R. K., Thomas Jr, A. J., & Agarwal, A. (2020). Improvement in motion characteristics and acrosome status in cryopreserved human spermatozoa by swim- up processing before freezing. Human Reproduction, 15(10), 2173-2179.

Fuller, B., & Paynter, S. (2004). Fundamentals of cryobiology in reproductive medicine. Reproductive BioMedicine Online, 9(6), 680-691.

Gosálvez, J., López-Fernández, C., Fernández, J. L., Esteves, S. C., & Johnston, S. D. (2011). Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. Journal of Reproductive Biotechnology and Fertility, 2(2), 66-79.

Hezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V., & Shahverdi, A. (2018). Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reproductive BioMedicine Online, 37(3), 327-339.

Holt, W. V. (2000). Basic aspects of frozen storage of semen. Animal Reproduction Science, 62(1-3), 3-22.

Hotaling, J. M., Lopushnyan, N. A., Davenport, M., Christensen, H., Pagel, E. R., Muller,

C. H., & Walsh, T. J. (2013). Raw and test-thaw semen parameters after cryopreservation among men with newly diagnosed cancer. Fertility and Sterility, 99(2), 464-469.

Isachenko, E., Isachenko, V., Katkov, I. I., Dessole, S., & Nawroth, F. (2003). Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reproductive BioMedicine Online, 6(2), 191-200.

Isachenko, V., Isachenko, E., Petrunkina, A. M., & Sanchez, R. (2012). Human spermatozoa vitrified in the absence of permeable cryoprotectants: birth of two healthy babies. Reproduction, Fertility and Development, 24(2), 323-326.

Isachenko, V., Isachenko, E., Katkov, I. I., Montag, M., Dessole, S., Nawroth, F., & Van Der Ven, H. (2004). Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biology of Reproduction, 71(4), 1167-1173.

Isachenko, V., Maettner, R., Petrunkina, A. M., Sterzik, K., Mallmann, P., Rahimi, G., ... & Isachenko, E. (2012). Vitrification of human ICSI/IVF spermatozoa without cryoprotectants: new capillary technology. Journal of Andrology, 33(3), 462-468.

Katz, D. J., Kolon, T. F., Feldman, D. R., & Mulhall, J. P. (2017). Fertility preservation strategies for male patients with cancer. Nature Reviews Urology, 14(6), 339-347.

Knox, R. V. (2015). The fertility of frozen boar sperm when used for artificial insemination. Reproduction in Domestic Animals, 50, 90-97.

Lanza, R. P., Dresser, B. L., & Damiani, P. (2014). Preservation of genetic resources through cryopreservation of gametes, embryos, and stem cells. In Reproductive Medicine Review (pp. 1-24). Cambridge University Press

Agarwal, A., Majzoub, A., Baskaran, S., Panner Selvam, M. K., Cho, C. L., Henkel, R., ... & Ombelet, W. (2020). Sperm DNA fragmentation: A critical assessment of clinical practice guidelines. The World Journal of Men's Health, 38(4), 412-420.

Aisen, E. G., Medina, V. H., & Venturino, A. (2005). Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations. Theriogenology, 63(8), 2047-2056.

Amidi, F., Pazhohan, A., Shabani Nashtaei, M., Khodarahmian, M., & Nekoonam, S. (2016). The role of antioxidants in sperm freezing: a review. Cell and Tissue Banking, 17(4), 745-756.

Anger, J. T., Gilbert, B. R., & Goldstein, M. (2003). Cryopreservation of sperm: indications, methods and results. The Journal of Urology, 170(4), 1079-1084.

Arav, A., Yavin, S., Zeron, Y., Natan, D., Dekel, I., & Gacitua, H. (2002). New trends in gamete's cryopreservation. Molecular and Cellular Endocrinology, 187(1-2), 77-81.

Bailey, J. L., Bilodeau, J. F., & Cormier, N. (2000). Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. Journal of Andrology, 21(1), 1-7.

Ball, B. A. (2008). Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Animal Reproduction Science, 107(3-4), 257-267.

Barbas, J. P., & Mascarenhas, R. D. (2009). Cryopreservation of domestic animal sperm cells. Cell and Tissue Banking, 10(1), 49-62.

Best, B. P. (2015). Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Research, 18(5), 422-436.

Bunge, R. G., & Sherman, J. K. (1973). Fertilizing capacity of frozen human spermatozoa. Nature, 245(5425), 424-425.

Critser, J. K., & Mobraaten, L. E. (2000). Cryopreservation of murine spermatozoa. ILAR Journal, 41(4), 197-206.

Di Santo, M., Tarozzi, N., Nadalini, M., & Borini, A. (2012). Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Advances in Urology, 2012, 854837.

Elliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74-91.

Fuller, B., & Paynter, S. (2004). Fundamentals of cryobiology in reproductive medicine. Reproductive Biomedicine Online, 9(6), 680-691.

Gadea, J. (2003). Semen extenders used in the artificial insemination of swine. Spanish Journal of Agricultural Research, 1(2), 17-27.

Gao, D., & Critser, J. K. (2000). Mechanisms of cryoinjury in living cells. ILAR Journal, 41(4), 187-196.

Gosden, R. (2011). Cryopreservation: a cold look at technology for fertility preservation. Fertility and Sterility, 96(2), 264-268.

Hammerstedt, R. H., Graham, J. K., & Nolan, J. P. (1990). Cryopreservation of mammalian sperm: what we ask them to survive. Journal of Andrology, 11(1), 73-88.

Hezavehei, M., Sharafi, M., Kouchesfahani, H. M., Henkel, R., Agarwal, A., Esmaeili, V., & Shahverdi, A. (2018). Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reproductive Biomedicine Online, 37(3), 327-339.

Holt, W. V. (2000). Basic aspects of frozen storage of semen. Animal Reproduction Science, 62(1-3), 3-22.

Isachenko, E., Isachenko, V., Katkov, I. I., Dessole, S., & Nawroth, F. (2003). Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reproductive Biomedicine Online, 6(2), 191-200.

Isachenko, V., Isachenko, E., Katkov, I. I., Montag, M., Dessole, S., Nawroth, F., & Van Der Ven, H. (2004). Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biology of Reproduction, 71(4), 1167-1173.

Isachenko, V., Maettner, R., Petrunkina, A. M., Mallmann, P., Rahimi, G., Sterzik, K., ... & Isachenko, E. (2012). Cryoprotectant-free vitrification of human spermatozoa in large volume: a novel technology. Clinical Laboratory, 58(9-10), 889-896.

Isachenko, V., Isachenko, E., Petrunkina, A. M., & Sanchez, R. (2008). Human spermatozoa vitrified in the absence of permeable cryoprotectants: birth of two healthy babies. Reproduction, Fertility and Development, 20(2), 323-331.

Keogh, B. P., O'Brien, J. K., & Keeley, T. (2020). Novel approaches and applications in mammalian sperm cryopreservation—A review. Animal Reproduction Science, 214, 106279.

Kuleshova, L. L., & Lopata, A. (2002). Vitrification can be more favorable than slow cooling. Fertility and Sterility, 78(3), 449-454.

Lanza, R. P., Dresser, B. L., & Damiani, P. (2014). Preservation of genetic resources through cryopreservation of gametes, embryos, and stem cells. In Reproductive Medicine Review (pp. 1-24). Cambridge University Press.

Li, Y. X., Zhou, L., Lv, M. Q., Ge, P., Liu, Y. C., & Zhou, D. X. (2019). Vitrification and conventional freezing methods in sperm cryopreservation: A systematic review and meta- analysis. European Journal of Obstetrics & Gynecology and Reproductive Biology, 233, 84-92.

Liu, J., Westhusin, M., Long, C., Johnson, G., Burghardt, R., & Kraemer, D. (2016). Freeze-dried bovine spermatozoa: effects of storage temperature and rehydration fluid on embryo development. Theriogenology, 85(1), 21-29.

Loomis, P. R., & Graham, J. K. (2008). Commercial semen freezing: individual male variation in cryosurvival and the response of stallion sperm

Polge, C., Smith, A. U., & Parkes, A. S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 164(4172), 666-667.

Rall, W. F., & Fahy, G. M. (1985). Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature, 313(6003), 573-575.

Watson, P. F. (2000). The effects of cryopreservation on sperm function. Reproduction, Fertility and Development, 12(1), 1-5.

Downloads

Published

2025-07-15

How to Cite

1.
Sarwan J, abid E, Sharma P, Raju M, Nakhro V, Reddy Kunduru SK, Chowdhury DD, Sharma P, Kaur D. Review On Vitrification and Conventional Freezing Method in Sperm Collection, Freezing and Cryopreservation. J Neonatal Surg [Internet]. 2025Jul.15 [cited 2025Oct.12];14(32S):5327-45. Available from: https://jneonatalsurg.com/index.php/jns/article/view/8301

Most read articles by the same author(s)