Formulation and Evaluation of Polyherbal Gel containing Azadirachta indica (Neem), Ocimum sanctum (Tulsi), and Trigonella foenum-graecum (Fenugreek) for Antifungal Action
Keywords:
Polyherbal gel, Antifungal activity, Azadirachta indica, Ocimum sanctum, Trigonella foenum-graecum, Carbopol 940, Topical drug delivery, Herbal formulationAbstract
The escalating prevalence of dermatophytic infections and the emergence of antifungal resistance have necessitated the development of novel, plant-based therapeutics with improved biocompatibility, safety, and efficacy. This study reports the formulation and comprehensive evaluation of a polyherbal topical gel incorporating extracts from Azadirachta indica (Neem), Ocimum sanctum (Tulsi), and Trigonella foenum-graecum (Fenugreek), aimed at enhancing antifungal action through synergistic phytochemical interactions. Using carbopol 940 as the gelling agent, a series of formulations (PHG1 to PHG8) with varying concentrations of the polyherbal extracts were prepared and assessed for their physicochemical attributes including pH, viscosity, homogeneity, spreadability, and extrudability. The antifungal efficacy was evaluated using the agar well diffusion method against Candida albicans and Aspergillus niger, benchmarked against standard antifungal agents.
Formulation PHG4, containing 4% polyherbal extract, demonstrated optimal viscosity (4520 ± 15 cP), suitable spreadability (6.2 ± 0.1 cm), and a pH of 6.1 ± 0.2, indicating compatibility with the physiological skin environment. Notably, PHG4 exhibited a significant antifungal zone of inhibition (23.6 ± 0.3 mm) against C. albicans, closely approximating the performance of the standard drug fluconazole (25.1 ± 0.2 mm). Statistical analysis revealed significant differences (p < 0.05) between lower-concentration batches and PHG4, highlighting its potential as an effective alternative to synthetic formulations. The results underscore the efficacy of synergistically combined herbal extracts in a semisolid vehicle, offering a promising approach to combat fungal infections while minimizing the risk of resistance and adverse reactions.
Downloads
References
Adnan, M., et al. (2020). Evaluation of antifungal activity of medicinal plants. Journal of Ethnopharmacology, 248, 112271. https://doi.org/10.1016/j.jep.2019.112271
Berman, J., & Krysan, D. J. (2020). Drug resistance and tolerance in fungi. Nature Reviews Microbiology, 18(6), 319–331. https://doi.org/10.1038/s41579-020-0345-1
Bonete, M. J., et al. (2017). Structural and rheological properties of polymer gels. Soft Matter, 13(12), 2243–2250. https://doi.org/10.1039/C6SM02946G
Dantas, L. M. F., et al. (2016). Topical delivery systems for antifungals. Journal of Pharmaceutical Sciences, 105(10), 2989–3006. https://doi.org/10.1016/j.xphs.2016.06.014
Das, S., et al. (2020). Antifungal properties of essential oils. Frontiers in Microbiology, 11, 562513. https://doi.org/10.3389/fmicb.2020.562513
Diep, T. V., & Hoyer, L. L. (2020). Fungal evasion strategies. PLOS Pathogens, 16(7), e1008764. https://doi.org/10.1371/journal.ppat.1008764
Elsegeiny, W., et al. (2018). Immune evasion by fungi. Trends in Microbiology, 26(7), 539–552. https://doi.org/10.1016/j.tim.2018.02.011
Fazlul, M., et al. (2019). Evaluation of antifungal potential of Bacopa monnieri. Biomedicine & Pharmacotherapy, 110, 609–616. https://doi.org/10.1016/j.biopha.2018.11.104
Ghannoum, M. A., et al. (2018). Antifungal resistance: An emerging threat. Lancet Infectious Diseases, 18(4), e153–e165. https://doi.org/10.1016/S1473-3099(18)30053-5
Ghosh, S., et al. (2018). Antifungal efficacy of polyherbal gel. International Journal of Research in Ayurveda and Pharmacy, 9(2), 40–47. https://doi.org/10.7897/2277-4343.09240
Gupta, R., & Singh, S. (2020). Evaluation of herbal gel vs cream. Journal of Drug Delivery and Therapeutics, 10(2), 81–87. https://doi.org/10.22270/jddt.v10i2.3998
Helal, D. A., et al. (2017). Formulation of topical gel using Carbopol. Drug Development and Industrial Pharmacy, 43(8), 1244–1252. https://doi.org/10.1080/03639045.2017.1312731
Houšť, J., et al. (2020). Antifungal resistance mechanisms. Microorganisms, 8(9), 1411. https://doi.org/10.3390/microorganisms8091411
Kale, R., et al. (2020). Antifungal activity of herbal gels. Research Journal of Pharmacy and Technology, 13(4), 1661–1666. https://doi.org/10.5958/0974-360X.2020.00296.7
Kareru, P. G., et al. (2012). Traditional herbal management of fungal infections. Journal of Ethnobiology and Ethnomedicine, 8, 15. https://doi.org/10.1186/1746-4269-8-15
Kaur, R., et al. (2019). Antifungal polyherbal gel formulation. Asian Journal of Pharmaceutical and Clinical Research, 12(5), 121–127. https://doi.org/10.22159/ajpcr.2019.v12i5.32939
Kim, J. H., et al. (2020). Global emergence of antifungal resistance. Nature Reviews Microbiology, 18(6), 332–346. https://doi.org/10.1038/s41579-019-0323-8
Li, H. Y., et al. (2021). Nanocarriers for transdermal drug delivery. International Journal of Nanomedicine, 16, 2051–2064. https://doi.org/10.2147/IJN.S297102
Marcos, C. M., et al. (2016). Candida albicans pathogenesis and resistance. FEMS Microbiology Reviews, 40(3), 293–305. https://doi.org/10.1093/femsre/fuv045
Mishra, S., et al. (2018). Formulation of polyherbal gel with Emblica officinalis. Journal of Applied Pharmaceutical Science, 8(3), 132–139. https://doi.org/10.7324/JAPS.2018.83019
Mohapatra, S., et al. (2019). Antimicrobial activity of polyherbal formulations: A review. J. Pharmacogn. Phytochem., 8(4), 2451–2457.
Mukherjee, P. K., et al. (2017). Evidence-based validation of herbal medicines. Fitoterapia, 123, 3–9. https://doi.org/10.1016/j.fitote.2017.09.001
Narayana, D. B. A., & Babu, M. (2016). Regulatory status of herbal products. Indian J. Pharmacol., 48(2), 115–118. https://doi.org/10.4103/0253-7613.178841
Oliveira, M. M., et al. (2021). Antifungal resistance in Candida spp. Pathogens, 10(1), 76. https://doi.org/10.3390/pathogens10010076
Padmavathi, A. R., et al. (2017). Neem gel against Candida spp. J. Pharm. Res., 11(2), 107–110. https://doi.org/10.18579/jpcrkc/2017/11/2/118485
Patel, D., et al. (2019). Herbal gel for antifungal activity. J. Drug Deliv. Ther., 9(4-s), 128–132. https://doi.org/10.22270/jddt.v9i4-s.3234
Prasad, R., & Rawal, M. K. (2017). Efflux pump inhibitors. Drug Resist. Updates, 27, 13–20. https://doi.org/10.1016/j.drup.2016.07.001
Raja, A., et al. (2021). Tulsi in skin diseases. J. Ethnopharmacol., 274, 113954. https://doi.org/10.1016/j.jep.2021.113954
Raut, J. S., & Karuppayil, S. M. (2014). Review of Ocimum sanctum. Indian J. Physiol. Pharmacol., 58(3), 235–244.
Reddy, P. S., et al. (2018). Fenugreek antifungal action. J. Appl. Pharm. Sci., 8(12), 112–116. https://doi.org/10.7324/JAPS.2018.81215
Roy, R. K., & Thakur, M. (2019). Polyherbal mechanism and efficacy. Phytother. Res., 33(5), 1211–1219. https://doi.org/10.1002/ptr.6318
Sahu, R. K., et al. (2017). Neem-based herbal gel. J. Appl. Pharm. Sci., 7(8), 103–107. https://doi.org/10.7324/JAPS.2017.70814
Shah, B., & Seth, A. K. (2018). Herbal skin therapy. Int. J. Green Pharm., 12(4), 199–203. https://doi.org/10.22377/ijgp.v12i4.1971
Sharma, R., et al. (2020). Gel-based delivery systems. Curr. Drug Deliv., 17(9), 728–739. https://doi.org/10.2174/1567201817666200114115802
Sinha, M., et al. (2016). Synergistic herbal gels. Int. J. Pharm. Sci. Rev. Res., 38(1), 224–228.
Srikar, S., et al. (2021). Nano herbal formulations. Phytomedicine Plus, 1(2), 100009. https://doi.org/10.1016/j.phyplu.2021.100009
Subramaniam, S., et al. (2018). Tulsi antimicrobial properties. Int. J. Herbal Med., 6(6), 114–119.
Sundararajan, M., et al. (2019). Herbal gel for infections. J. Drug Deliv. Sci. Technol., 52, 752–757. https://doi.org/10.1016/j.jddst.2019.05.031
Thakur, R., et al. (2016). Topical antifungal gels. Int. J. Res. Pharm. Sci., 7(4), 430–436.
Tomar, R., et al. (2020). Future of polyherbal gels. J. Ayurveda Integr. Med., 11(3), 299–305. https://doi.org/10.1016/j.jaim.2019.10.001
Tripathi, A., et al. (2021). Natural polymers in gels. Int. J. Biol. Macromol., 170, 753–764. https://doi.org/10.1016/j.ijbiomac.2020.12.016
Udupa, N., et al. (2018). Herbal topical gel. Res. J. Pharm. Technol., 11(6), 2560–2564. https://doi.org/10.5958/0974-360X.2018.00474.9
Van de Sande, W. W. J. (2014). Burden of fungal disease. Lancet Infect. Dis., 14(9), 820–821. https://doi.org/10.1016/S1473-3099(14)70837-4
Waghmare, R., et al. (2020). Eugenol in antifungal use. J. Essent. Oil Res., 32(3), 207–213. https://doi.org/10.1080/10412905.2020.1715313
Wagner, K., et al. (2017). Polyphenols in antifungal use. Int. J. Mol. Sci., 18(12), 2542. https://doi.org/10.3390/ijms18122542
Wang, L., et al. (2018). Natural product antifungals. Curr. Top. Med. Chem., 18(15), 1226–1238. https://doi.org/10.2174/1568026618666180702101325
Wiederhold, N. P. (2020). Clinical perspectives on resistance. Ther. Adv. Infect. Dis., 7, 2049936120932296. https://doi.org/10.1177/2049936120932296
Zida, A., et al. (2017). Medicinal plants in mycoses. Med. Aromat. Plants, 6(3), 292. https://doi.org/10.4172/2167-0412.1000292
Zuzarte, M., & Salgueiro, L. (2015). Essential oils as antifungals. Nat. Prod. Rep., 32(8), 999–1015. https://doi.org/10.1039/C5NP00082A
World Health Organization. (2022). Traditional Medicine Strategy 2014–2023. https://apps.who.int/iris/handle/10665/92455
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.