Assessment of Anti-Inflammatory and Analgesic Activities of a Novel Quinazoline Derivative in Animal Models

Authors

  • Rohini Holkunde
  • Yogesh H S
  • Vanitha C
  • Kadam Sachin
  • Nabanita Banik
  • Pallab Kumar Nath
  • Sabnam Nargis
  • Sanket Sanjay Gabhale

Keywords:

Quinazoline derivative, Anti-inflammatory, Analgesic, Carrageenan, Acetic acid writhing, Hot plate test

Abstract

The present study evaluates the anti-inflammatory and analgesic potential of a novel quinazoline derivative using validated in vivo animal models. Quinazoline-based compounds have garnered pharmacological interest due to their diverse biological activities, including modulation of inflammatory and nociceptive pathways. In this investigation, the test compound was synthesized and structurally characterized, followed by assessment of its biological efficacy through acute and chronic inflammation models, and peripheral and central analgesic assays. Acute toxicity testing, conducted as per OECD Guideline 423, confirmed a high safety margin with no mortality or significant clinical signs observed up to 2000 mg/kg in mice. Anti-inflammatory activity was examined using carrageenan-induced paw edema and cotton pellet-induced granuloma models in rats. The compound showed dose-dependent inhibition of paw edema and granuloma formation, with the 50 mg/kg dose exhibiting efficacy comparable to indomethacin. Analgesic potential was assessed using acetic acid-induced writhing and the hot plate test in mice. The compound significantly reduced writhing counts, indicating peripheral analgesic activity, and increased latency in the hot plate test, suggestive of central analgesia. Mechanistic insights suggest possible cyclooxygenase inhibition and modulation of inflammatory cytokines or opioid-mediated pathways. The results demonstrate that the quinazoline derivative exhibits both anti-inflammatory and analgesic properties across models with a favorable safety profile. These findings support its potential as a lead compound for further development. Future studies involving molecular docking, pharmacokinetic profiling, and clinical translation are warranted to establish therapeutic applicability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alafeefy, A. M., Kadi, A. A., Al-Deeb, O. A., El-Tahir, K. E. H., & Al-Jaber, N. A. (2010). Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. European Journal of Medicinal Chemistry. https://doi.org/10.1016/j.ejmech.2010.07.067

Azarbaijani, M., Kian, M., & Soraya, H. (2021). Anti-inflammatory effects of memantine in carrageenan-induced paw edema model in rats. Journal of Reports in Pharmaceutical Sciences. https://doi.org/10.4103/jrptps.JRPTPS_37_20

Bruns, J., Höppe, H. A., Daub, M., Hillebrecht, H., & Huppertz, H. (2020). Borosulfates—Synthesis and Structural Chemistry of Silicate Analogue Compounds. In Chemistry - A European Journal. https://doi.org/10.1002/chem.201905449

Buabeid, M. A., Yaseen, H. S., Asif, M., Murtaza, G., & Arafa, E. S. A. (2022). Anti-Inflammatory and Anti-Angiogenic Aattributes of Moringa olifera Lam. and its Nanoclay-Based Pectin-Sericin films. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2022.890938

Cáceres, M., García, R., & García, O. (2020). The management of emotional intelligence in high school students. An exploratory study at a telesecundaria in mexico. Molecules.

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. In Oncotarget. https://doi.org/10.18632/oncotarget.23208

Cordaro, M., Siracusa, R., Fusco, R., D’amico, R., Peritore, A. F., Gugliandolo, E., Genovese, T., Scuto, M., Crupi, R., Mandalari, G., Cuzzocrea, S., Di Paola, R., & Impellizzeri, D. (2020). Cashew (Anacardium occidentale L.) nuts counteract oxidative stress and inflammation in an acute experimental model of carrageenan-induced paw edema. Antioxidants. https://doi.org/10.3390/antiox9080660

Dainese, P., Wyngaert, K. V., De Mits, S., Wittoek, R., Van Ginckel, A., & Calders, P. (2022). Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review. In Osteoarthritis and Cartilage. https://doi.org/10.1016/j.joca.2021.12.003

Dar, A., Faizi, S., Naqvi, S., Roome, T., Zikr-Ur-Rehman, S., Ali, M., Firdous, S., & Moin, S. T. (2005). Analgesic and antioxidant activity of mangiferin and its derivatives: The structure activity relationship. Biological and Pharmaceutical Bulletin. https://doi.org/10.1248/bpb.28.596

Deng, L., He, S., Guo, N., Tian, W., Zhang, W., & Luo, L. (2023). Molecular mechanisms of ferroptosis and relevance to inflammation. In Inflammation Research. https://doi.org/10.1007/s00011-022-01672-1

E Reynosa Navarro. (2020). Didactic strategies for scientific research: relevance in the training of researchers. Molecules.

Elion, I. R. D. G., Etou, O. A. W., Epa, C., Nsondé, N. G. F., Bokia, C. B., Ouamba, J. M., & Abena, A. A. (2017). Anti-inflammatory and analgesic effects of leaves of Chromolaena odorata L. (King and Robinson). African Journal of Pharmacy and Pharmacology. https://doi.org/10.5897/ajpp2017.4753

Gilles, L., & Antoniotti, S. (2022). Spirocyclic Compounds in Fragrance Chemistry: Synthesis and Olfactory Properties. In ChemPlusChem. https://doi.org/10.1002/cplu.202200227

Haghighijoo, Z., Zamani, L., Moosavi, F., & Emami, S. (2022). Therapeutic potential of quinazoline derivatives for Alzheimer’s disease: A comprehensive review. In European Journal of Medicinal Chemistry. https://doi.org/10.1016/j.ejmech.2021.113949

Haseena Banu, B., Prasad, K. V. S. R. G., & Bharathi, K. (2015). Biological importance of quinazolin-4-one scaffold and its derivatives-a brief update. International Journal of Pharmacy and Pharmaceutical Sciences.

Hwang, Y. J., Coley, C. W., Abolhasani, M., Marzinzik, A. L., Koch, G., Spanka, C., Lehmann, H., & Jensen, K. F. (2017). A segmented flow platform for on-demand medicinal chemistry and compound synthesis in oscillating droplets. Chemical Communications. https://doi.org/10.1039/c7cc03584e

Jolayemi, A. T., & Ojewole, J. A. O. (2013). Comparative anti-inflammatory properties of Capsaicin and ethyl-aAcetate extract of Capsicum frutescens linn [Solanaceae] in rats. African Health Sciences. https://doi.org/10.4314/ahs.v13i2.23

Jonsson, M., Jestoi, M., Nathanail, A. V., Kokkonen, U. M., Anttila, M., Koivisto, P., Karhunen, P., & Peltonen, K. (2013). Application of OECD Guideline 423 in assessing the acute oral toxicity of moniliformin. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2012.11.023

Kattan, M. W., & Vickers, A. J. (2020). Statistical Analysis and Reporting Guidelines for CHEST. In Chest. https://doi.org/10.1016/j.chest.2019.10.064

M., M., S., S., A., F., & G., A. (2017). Recent highlights on molecular hybrids potentially useful in central nervous system disorders. Mini-Reviews in Medicinal Chemistry.

Marwa, A., Iskandarsyah, & Jufri, M. (2023). Nanoemulsion curcumin injection showed significant anti-inflammatory activities on carrageenan-induced paw edema in Sprague-Dawley rats. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e15457

Mukherjee, P., Roy, S., Ghosh, D., & Nandi, S. K. (2022). Role of animal models in biomedical research: a review. In Laboratory Animal Research. https://doi.org/10.1186/s42826-022-00128-1

Niyomchan, A., Chatgat, W., Chatawatee, B., Keereekoch, T., Issuriya, A., Jaisamut, P., Chusri, S., & Kunworarath, N. (2023). Safety Evaluation of the Polyherbal Formulation NawaTab: Acute and Subacute Oral Toxicity Studies in Rats. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2023/9413458

Park, S. J., & Im, D. S. (2021). 2-arachidonyl-lysophosphatidylethanolamine induces anti-inflammatory effects on macrophages and in carrageenan-induced paw edema. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22094865

Patel, C., Shukla, P., Pande, S., Punamiya, R., Ranch, K., & Boddu, S. H. S. (2024). Acute and sub-acute toxicity study of anti-obesity herbal granules in Sprague Dawley rats. Brazilian Journal of Biology. https://doi.org/10.1590/1519-6984.264320

Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. In Drug Discovery Today. https://doi.org/10.1016/j.drudis.2020.10.010

Sewell, F., Ragan, I., Horgan, G., Andrew, D., Holmes, T., Manou, I., Müller, B. P., Rowan, T., Schmitt, B. G., & Corvaro, M. (2024). New supporting data to guide the use of evident toxicity in acute oral toxicity studies (OECD TG 420). Regulatory Toxicology and Pharmacology. https://doi.org/10.1016/j.yrtph.2023.105517

Taqi, A., Gran, S., & Knaggs, R. D. (2021). Current use of analgesics and the risk of falls in people with knee osteoarthritis: A population-based cohort study using primary care and hospital records. Osteoarthritis and Cartilage Open. https://doi.org/10.1016/j.ocarto.2021.100165

Wagner, B. K., Nixon, E., Robles, I., Baynes, R. E., Coetzee, J. F., & Pairis-Garcia, M. D. (2021). Non-steroidal anti-inflammatory drugs: Pharmacokinetics and mitigation of procedural-pain in cattle. Animals. https://doi.org/10.3390/ani11020282

Wani, T. A., Kumar, D., Prasad, R., Verma, P. K., Sardar, K. K., Tandan, S. K., & Kumar, D. (2012). Analgesic activity of the ethanolic extract of Shorea robusta resin in experimental animals. Indian Journal of Pharmacology. https://doi.org/10.4103/0253-7613.99322

Wu, J., Yang, X., Pan, Y., Zuo, T., Ning, Z., Li, C., & Zhang, Z. (2023). Recent developments of automated flow chemistry in pharmaceutical compounds synthesis. In Journal of Flow Chemistry. https://doi.org/10.1007/s41981-023-00285-x

Zayed, M. F. (2022). Medicinal Chemistry of Quinazolines as Analgesic and Anti-Inflammatory Agents. In ChemEngineering. https://doi.org/10.3390/chemengineering6060094

Zhang, W., Lyu, J., Xu, J., Zhang, P., Zhang, S., Chen, Y., Wang, Y., & Chen, G. (2021). The related mechanism of complete Freund’s adjuvant-induced chronic inflammation pain based on metabolomics analysis. Biomedical Chromatography. https://doi.org/10.1002/bmc.5020

Downloads

Published

2025-06-25

How to Cite

1.
Holkunde R, H S Y, C V, Sachin K, Banik N, Nath PK, Nargis S, Gabhale SS. Assessment of Anti-Inflammatory and Analgesic Activities of a Novel Quinazoline Derivative in Animal Models. J Neonatal Surg [Internet]. 2025Jun.25 [cited 2025Jul.15];14(32S):2103-15. Available from: https://jneonatalsurg.com/index.php/jns/article/view/7705