A Review Of Cardiovascular Disease Prediction Models Using Deep Learning And Transfer Learning In Cardiology
Keywords:
Cardiovascular disease, machine learning, deep CNN, transfer learning, optimization hybrid, modelAbstract
Cardiovascular diseases (CVDs) represent the foremost cause of death on a global scale.According to a report by the World Health Organization, around 18.6 million individuals succumb to CVD annually. Key cardiac risks encompass arrhythmia and coronary artery disease, among others. Recent developments in Artificial Intelligence have become crucial for life-saving interventions in CVD treatment. This survey explores the latest advancements in Machine Learning, Deep Learning, and Pre-trained transfer learning models for classifying and predicting CVD, drawing on a review of 122 articles, which include 33 image datasets, 38 signal data, and 49 clinical data from diverse sources. The survey delves into risk factor of cardiovascular disease, cardiac impairment category, medical image processing techniques, performance metrics, and hybrid techniques. Studies on traditional neural networks like Convolutional Neural Networks, Artificial Neural Networks, and Recurrent Neural Networks often achieve accuracy rates ranging from 75% to 95%. By utilizing pre-trained architectures such as ResNet, DenseNet, Alex Net, Bi-GRU, Mobile Net, Efficient Net, and Google Net, BERT , transfer learning models consistently surpass other methods, frequently achieving accuracy levels exceeding 96%. Researchers employ various hybrid optimization algorithms to enhance the overall accuracy rate. The survey's findings support an accurate prognosis for patients with comorbidities The findings underscore challenges in combining multimodal data for real-time risk evaluation, while also offering valuable insights that could bridge existing gaps in cardiovascular disease prediction and support clinicians in early diagnosis and prognosis.
Downloads
Metrics
References
Shahrokh asadi and Fatmeh Yazdi “Enhancing Cardiovascular Disease Diagnosis: The Power of optimized ensemble learnings”IEEE xplore ,vol 13,march 2025.
M. B. Abubaker and B. Babayigit, ‘‘Detection of cardiovascular diseases in ECG images using machine learning and deep learning methods,’’ IEEE Trans. Artif. Intell., vol. 4, no. 2, pp. 373–382, Apr. 2023.
E. Dritsas and M. Trigka, ‘‘Long-term coronary artery disease risk pre-diction with machine learning models,’’ Sensors, vol. 23, no. 3, p. 1193,Jan. 2023.
M. Boulares, T. Alafif, and A. Barnawi, ‘‘Transfer learning bench-mark for cardiovascular disease recognition,’’ IEEE Access, vol. 8,pp. 109475–109491, 2020.
M. Swathy, K. Saruladha “A comparative study of classification and prediction of Cardio-Vascular Diseases(CVD) using machine learnings and deep learnings techniques” ICT Xpress , aug 18,2021.
Yehualashet Megersa Ayano,Friedhelm Schwenker,(Member,IEEE),Bisrat Derebssa Dufera,Taye Girma Debelee,and Yitagesu Getachew Ejegu “Interpretable Hybrid Multichannel Deep Learning Model for Heart Disease Classification Using 12-Lead ECG Signal “ IEEE Xplore,vol12,2024.
Ashay Jain,Prashant Kesharwani,Neeraj Kumar Garg Atul Jain,Pradip irbhavane,Nitin Dwivedi,Sanjeev Banerjee,Arun K. Iyer,Mohd Cairul Iqbal Mohd Amin” Nano-constructed Carriers Loaded With Antioxidant: Boon For Cardiovascular System” Article in Current Pharmaceutical Design August 2015.
C. Shao, J. Wang, J. Tian, and Y. D. Tang, ‘‘Coronary artery disease:From mechanism to clinical practice,’’ in Coronary Artery Disease:Therapeutics and Drug Discovery. Singapore: Springer, 2020, pp. 1–36.
J. Reeh, C. B. Therming, M. Heitmann, S. Højberg, C. Sørum, J. Bech,D. Husum, H. Dominguez, T. Sehestedt, T. Hermann, K. W. Hansen,L. Simonsen, S. Galatius, and E. Prescott, ‘‘Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina,’’ Eur. Heart J., vol. 40, no. 18, pp. 1426–1435, May 2019.
A. Al-Ramini, M. Hassan, F. Fallahtafti, M. A. Takallou, H. Rahman,B. Qolomany, I. I. Pipinos, F. Alsaleem, and S. A. Myers, ‘‘Machine learning-based peripheral artery disease identification using laboratory-based gait data,’’ Sensors, vol. 22, no. 19, p. 7432, Sep. 2022.
S. P. Marso and W. R. Hiatt, ‘‘Peripheral arterial disease in patients with diabetes,’’ J. Amer. College Cardiol., vol. 47, no. 5, pp. 921–929,Mar. 2006.
M. T. Maeder, L. Weber, M. Buser, M. Gerhard, P. K. Haager, F. Maisano,and H. Rickli, ‘‘Pulmonary hypertension in aortic and mitral valve dis-ease,’’ Frontiers Cardiovascular Med., vol. 5, p. 40, May 2018.
Z. G. Turi, ‘‘Mitral valve disease,’’ Circulation, vol. 109, no. 6, pp. e38–e41, Feb. 2004.
R. Naeije, ‘‘Physiology of the pulmonary circulation and the right heart,’’Current Hypertension Rep., vol. 15, no. 6, pp. 623–631, Dec. 2013.
M. Middeke and J. Schrader, ‘‘Nocturnal blood pressure in normotensive subjects and those with white coat, primary, and secondary hyper-tension,’’ BMJ, vol. 308, no. 6929, pp. 630–632, Mar. 1994.
D. A. Calhoun, D. Jones, S. Textor, D. C. Goff, T. P. Murphy,R. D. Toto, A. White, W. C. Cushman, W. White, D. Sica, K. Ferdinand,T. D. Giles, B. Falkner, and R. M. Carey, ‘‘Resistant hypertension:Diagnosis, evaluation, and treatment: A scientific statement from the American Heart Association professional education committee of the council for high blood pressure research,’’ Hypertension, vol. 51, no. 6,pp. 1403–1419, Jun. 2008.
A. Amery, R. Fagard, C. Guo, J. Staessen, and L. Thus, ‘‘Isolated systolic hypertension in the elderly: An epidemiologic review,’’ Amer.J. Med., vol. 90, no. 3, pp. S64–S70, Mar. 1991.
T. G. Pickering, K. Davidson, W. Gerin, and J. E. Schwartz, ‘‘Masked hypertension,’’ Hypertension, vol. 40, no. 6, pp. 795–796, Dec. 2002.
P. Ponikowski, S. D. Anker, K. F. AlHabib, M. R. Cowie,T. L. Force, and S. Hu, ‘‘Heart failure: Preventing disease and death worldwide,’’ ESC Heart Failure, vol. 1, no. 1, pp. 4–25, Sep. 2014.
M. Genet, L. C. Lee, B. Baillargeon, J. M. Guccione, and E. Kuhl, ‘‘Modeling pathologies of diastolic and systolic heart failure,’’ Ann. Biomed. Eng., vol. 44, no. 1, pp. 112–127, Jan. 2016.
M. Jessup and S. Brozena, ‘‘Treatment of advanced heart failure,’’ Car-diol. Rev., vol. 8, no. 3, pp. 148–157, May 2000.
F. Haddad, R. Doyle, D. J. Murphy, and S. A. Hunt, ‘‘Right ventricu-lar function in cardiovascular disease, Part II: Pathophysiology, clinical importance, and management of right ventricular failure,’’ Circulation,vol. 117, no. 13, pp. 1717–1731, Apr. 2008.
M. A. Mir, R. S. Al-Baradie, and M. D. Alhussainawi, ‘‘Pathophysiology of strokes,’’ in Recent Advances in Stroke Therapeutics, 1st ed. Haup-pauge, NY, USA: Nova Science Publishers, 2014, pp. 25–80.
J. Fan, X. Li, X. Yu, Z. Liu, Y. Jiang, Y. Fang, M. Zong, C. Suo, Q.Man, and L. Xiong, ‘‘Global burden, risk factor analysis, and predic-tion study of ischemic stroke, 1990–2030,’’ Neurology, vol. 101, no. 2,pp. e137–e150, Jul. 2023.
R. Perna and J. Temple, ‘‘Rehabilitation outcomes: Ischemic versushemorrhagic strokes,’’ Behavioural Neurol., vol. 2015, no. 1, 2015,Art. no. 891651.
Guo Chunling, “Advantages, disadvantages and options of coronary artery bypass grafting under extracorporeal and non-extracorporeal circulation for coronary atherosclerotic heart disease”, 2024 8th International Conference on Biomedical Engineering and Applications (ICBEA) | 979-8-3503-7529-9/24/$31.00 ©2024 IEEE.
Robbert W.Van Hamersvelt, Majd zreik ,Nadieh Khalili,Jelmer M.Volterrink,Michiel voskuil,Max A.Viergever, “Deep Learning Analysis of Coronary Arteries in Cardiac CT Angiography for Detection of Patients Requiring Invasive Coronary Angiography”, I EEE Xplore ,Vol 39,2020.
Arash Shokouhmand,Haoran Wen,Samiha Khan,Joseph A. Puma,Amisha Patel,Philip Green,Farrokh Ayazi,Negar Tavassolian,"Diagnosis of Peripheral Artery Disease Using Backflow Abnormalities in Proximal Recordings of Accelerometer Contact Microphone (ACM)",IEEE Journal of Biomedical and Health Informatics,Vol 27, Issue: 1, January 2023.
A. Al-Ramini, M. Hassan, F. Fallahtafti, M. A. Takallou, H. Rahman,B. Qolomany, I. I. Pipinos, F. Alsaleem, and S. A. Myers, ‘‘Machine learning-based peripheral artery disease identification using laboratory-based gait data,’’ Sensors, vol. 22, no. 19, p. 7432, Sep. 2022.
Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,no. 7553, pp. 436–444, 2015.
L. Ara, X. Luo, A. Sawchuk, and D. Rollins, ‘‘Automate the peripheral arterial disease prediction in lower extremity arterial Doppler study using machine learning and neural networks,’’ in Proc. 10th ACM Int. Conf.Bioinf., Comput. Biol. Health Inform., Sep. 2019, pp. 130–135.
M. Hammad, A. M. Iliyasu, A. Subasi, E. S. L. Ho, and A. A. A. El-Latif,‘‘A multitier deep learning model for arrhythmia detection,’’ IEEE Trans. Instrum. Meas., vol. 70, pp. 1–9, 2021.
G. S. Saragih, Z. Rustam, D. Aldila, R. Hidayat, R. E. Yunus, and J. Pandelaki, ‘‘Ischemic stroke classification using random forests based on feature extraction of convolutional neural networks,’’ Int. J. Adv.Sci., Eng. Inf. Technol., vol. 10, no. 5, pp. 2177–2182, Oct. 2020.
C. A. U. Hassan, J. Iqbal, R. Irfan, S. Hussain, A. D. Algarni,S. S. H. Bukhari, N. Alturki, and S. S. Ullah, ‘‘Effectively predicting the presence of coronary heart disease using machine learning clas- sifiers,’’ Sensors, vol. 22, no. 19, p. 7227, Sep. 2022.
D. Zhang, Y. Li, C. A. Kalbaugh, L. Shi, J. Divers, S. Islam, and B. H. Annex, ‘‘Machine learning approach to predict in-hospital mortality in patients admitted for peripheral artery disease in the United States,’’J. Amer. Heart Assoc., vol. 11, no. 20, Oct. 2022.
M. Fang, Y. Chen, R. Xue, H. Wang, N. Chakraborty, T. Su, and Y. Dai,‘‘A hybrid machine learning approach for hypertension risk prediction,’’Neural Comput. Appl., vol. 35, no. 20, pp. 14487–14497, Jul. 2023.
D. Yun, H.-L. Yang, S. G. Kim, K. Kim, D. K. Kim, K.-H. Oh,K. W. Joo, Y. S. Kim, and S. S. Han, ‘‘Real-time dual prediction of intradialytic hypotension and hypertension using an explainable deep learning model,’’ Sci. Rep., vol. 13, no. 1, p. 18054, Oct. 2023.
Mohanad Alkhodari, H. Khandoker, J. Hadjileontiadis “Identification of Congenital Valvular Murmurs in Young Patients Using Deep Learning-Based Attention Transformers and Phonocardiograms” IEEE Journal of biomedical and Hhealthcare information, Vol. 28,April 2024.
U. R. Acharya, H. Fujita, S. L. Oh, U. Raghavendra, J. H. Tan,M. Adam, A. Gertych, and Y. Hagiwara, ‘‘Automated identification of shockable and non-shockable life-threatening ventricular arrhyth-mias using convolutional neural network,’’ Future Gener. Comput. Syst.,vol. 79, pp. 952–959, Feb. 2018.
C. Martin-Isla, V. M. Campello, C. Izquierdo, Z. Raisi-Estabragh,B. Baebler, and S. E. Petersen, ‘‘Image-based cardiac diagnosis with machine learning: A review,’’ Frontiers Cardiovascular Med., vol. 7, p. 1,Jan. 2020.
G. Redlarski, D. Gradolewski, and A. Palkowski, ‘‘A system for heart sounds classification,’’ PLoS ONE, vol. 9, no. 11, Nov. 2014,Art. no. e112673.
G. Tarroni, O. Oktay, W. Bai, A. Schuh, H. Suzuki, J. Passerat-Palmbach,A. de Marvao, D. P. O’Regan, S. Cook, B. Glocker, P. M. Matthews, and D. Rueckert, ‘‘Learning-based quality control for cardiac MR images,’’IEEE Trans. Med. Imag., vol. 38, no. 5, pp. 1127–1138, May 2019.
S. Ari, K. Hembram, and G. Saha, ‘‘Detection of cardiac abnormal-ity from PCG signal using LMS based least square SVM classifier,’’Expert Syst. Appl., vol. 37, no. 12, pp. 8019–8026, Dec. 2010.
J. Soni, U. Ansari, D. Sharma, and S. Soni, ‘‘Predictive data mining for medical diagnosis: An overview of heart disease prediction,’’ Int.J. Comput. Appl., vol. 17, no. 8, pp. 43–48, Mar. 2011.
A. U. Haq, J. P. Li, M. H. Memon, S. Nazir, and R. Sun, ‘‘A hybrid intelli-gent system framework for the prediction of heart disease using machine learning algorithms,’’ Mobile Inf. Syst., vol. 2018, no. 1, Dec. 2018,Art. no. 3860146.
A. Lakshmanarao, Y. Swathi, and P. S. S. Sundareswar, ‘‘Machine learn-ing techniques for heart disease prediction,’’ Forest, vol. 95, no. 99, p. 97,2019.
M. K. Hossen, ‘‘Heart disease prediction using machine learning tech-niques,’’ J. Appl. Technol. Innov., vol. 5, no. 3, pp. 146–154, 2022.
S. Nikhar and A. M. Karandikar, ‘‘Prediction of heart disease using machine learning algorithms,’’ Int. J. Adv. Eng., Manage. Sci., vol. 2,no. 6, 2016, Art. no. 239484.
I. D. Mienye, Y. Sun, and Z. Wang, ‘‘Improved sparse autoencoder based artificial neural network approach for prediction of heart dis-ease,’’ Informat. Med. Unlocked, vol. 18, Jan. 2020, Art. no. 100307, doi:10.1016/j.imu.2020.100307.
D. Yadav and S. Pal, ‘‘Prediction of heart disease using feature selec-tion and random forest ensemble method,’’ Int. J. Pharmaceutical Res.,vol. 12, no. 4, pp. 56–66, Jun. 2020.
J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,X. Wang, G. Wang, J. Cai, and T. Chen, ‘‘Recent advances in con-volutional neural networks,’’ Pattern Recognit., vol. 77, pp. 354–377,May 2018.
M. P. Than, J. W. Pickering, Y. Sandoval, A. S. V. Shah, A. Tsanas, F. S. Apple, and S. Blankenberg, ‘‘Machine learning to predict the likelihood of acute myocardial infarction,’’ Circulation, vol. 140, no. 11, pp. 899–909, Sep. 2019.
V. S. R. Kumari and P. R. Kumar, ‘‘Cardiac arrhythmia prediction using improved multilayer perceptron neural network,’’ Int. J. Electron., Commun. Instrum. Eng. Res. Develop., vol. 3, no. 4, pp. 73–80, 2013.
H. Yoo, S. Han, and K. Chung, ‘‘Diagnosis support model of cardiomegaly based on CNN using ResNet and explainable feature map,’’ IEEE Access, vol. 9, pp. 55802–55813, 2021.
F. De Marco, F. Ferrucci, M. Risi, and G. Tortora, ‘‘Classification of QRS complexes to detect premature ventricular contraction using machine learning techniques,’’ PLoS ONE, vol. 17, no. 8, Aug. 2022, Art. no. e0268555.
V.Jahmunah,E.Y.K.Ng,R.S.Tan,S.L.Oh,andU.R.Acharya,‘‘Uncertainty quantification in DenseNet model using myocardial infarction ECGsignals,’’Comput.MethodsProgramsBiomed.,vol.229,Feb.2023, Art. no. 107308.
J. Heo, J. J. Lee, S. Kwon, B. Kim, S. O. Hwang, and Y. R. Yoon, ‘‘A novel method for detecting ST segment elevation myocardial infarction on a 12-lead electrocardiogram with a three-dimensional display,’’ Biomed.SignalProcess.Control,vol.56,Feb.2020,Art. no. 101700.
D. Wu, X. Wang, J. Bai, X. Xu, B. Ouyang, Y. Li, H. Zhang, Q. Song, K. Cao, and Y. Yin, ‘‘Automated anatomical labeling of coronary arteries via bidirectional tree LSTMs,’’ Int. J. Comput. Assist. Radiol. Surgery, vol. 14, no. 2, pp. 271–280, Feb. 2019.
J. H. Kim, S. Y. Seo, C. G. Song, and K. S. Kim, ‘‘Assessment of electrocardiogramrhythmsbyGoogLeNetdeepneuralnetworkarchitecture,’’ J. Healthcare Eng., vol. 2019, Apr. 2019, Art. no. 2826901.
S. Karimi-Bidhendi, A. Arafati, A. L. Cheng, Y. Wu, A. Kheradvar, and H.Jafarkhani,‘‘Fully-automateddeep-learningsegmentationofpediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases,’’ J. Cardiovascular Magn. Reson., vol. 22, no. 1, p. 80, 2020.
H. Yang, Z. Li, and Z. Wang, ‘‘Prediction of atherosclerosis diseases using biosensor-assisted deep learning artificial neuron model,’’ Neural Comput. Appl., vol. 33, no. 10, pp. 5257–5266, May 2021.
Y. Zhang, J. Li, S. Wei, F. Zhou, and D. Li, ‘‘Heartbeats classification using hybrid time-frequency analysis and transfer learning based on ResNet,’’ IEEE J. Biomed. Health Informat., vol. 25, no. 11, pp. 4175–4184, Nov. 2021.
P. Dhar, S. Dutta, and V. Mukherjee, ‘‘Cross-wavelet assisted convolution neural network (AlexNet) approach for phonocardiogram signals classification,’’ Biomed. Signal Process. Control, vol. 63, Jan. 2021, Art. no. 102142.
A. Pal, R. Srivastva, and Y. N. Singh, ‘‘CardioNet: An efficient ECG arrhythmia classification system using transfer learning,’’ Big Data Res., vol. 26, Nov. 2021, Art. no. 100271.
S.Dou,S.Shao,C.Song,H.Shi,andH.Zhao,‘‘Electrocardiogramsignal classification algorithm based on the continuous wavelet transform and GoogleNetinanInternetofThingscontext,’’J.Mech.Med.Biol.,vol.22, no. 9, 2022, Art. no. 224004.
C.Zhao,W.Yao,M.Yi,C.Wan,andY.Tian,‘‘Arrhythmiaclassification algorithm based on a two-dimensional image and modified efficientnet,’’ Comput. Intell. Neurosci., vol. 2022, no. 1, 2022, Art. no. 8683855.
T.-R. Wei, S. Lu, and Y. Yan, ‘‘Automated atrial fibrillation detection with ECG,’’ Bioengineering, vol. 9, no. 10, p. 523, Oct. 2022.
S. Shin, M. Kang, G. Zhang, J. Jung, and Y. T. Kim, ‘‘Lightweight ensemble network for detecting heart disease using ECG signals,’’ Appl. Sci., vol. 12, no. 7, p. 3291, Mar. 2022.
A.Yashudas , Dinesh Gupta, G. C. Prashant, Amit Dua, Dokhyl AlQahtani, and A. Siva Krishna Reddy, “ DEEP-CARDIO: Recommendation System for Cardiovascular Disease Prediction Using IoT Network”,IEEE SENSORS JOURNAL,VOL.24,2024.
D. Cenitta, R. Vijaya Arjunan ,Ganesh Paramasivam ,N. Arul ,Anisha Palkar, And Krishnaraj Chadaga “Ischemic Heart Disease Prognosis: A Hybrid Residual Attention-Enhanced LSTM Model”I EEE Xplore ,vol 13, december 2024.
N.Safdarian,N.J.Dabanloo,andG.Attarodi,‘‘Anewpatternrecognition method for detection and localization of myocardial infarction using Twave integral and total integral as extracted features from one cycle of ECG signal,’’ J. Biomed. Sci. Eng., vol. 7, no. 10, pp. 818–824, 2014.
M. Abdar, W. Książek, U. R. Acharya, R.-S. Tan, V. Makarenkov, and P. Pławiak, ‘‘A new machine learning technique for an accurate diagnosis of coronary artery disease,’’ Comput. Methods Programs Biomed., vol. 179, Oct. 2019, Art. no. 104992.
G. Abdulsalam, S. Meshoul, and H. Shaiba, ‘‘Explainable heart disease prediction using ensemble-quantum machine learning approach,’’ Intell. Autom. Soft Comput., vol. 36, no. 1, pp. 761–779, 2023.
R. Zeleznik, B. Foldyna, P. Eslami, J. Weiss, I. Alexander, J. Taron, C. Parmar, R. M. Alvi, and D. Banerji, ‘‘Deep convolutional neural networks to predict cardiovascular risk from computed tomography,’’ Nature Commun., vol. 12, no. 1, p. 715, Jan. 2021.
K. N. V. P. S. Rajesh and R. Dhuli, ‘‘Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier,’’ Biomed. Signal Process. Control, vol. 41, pp. 242–254, Mar. 2018.
T. R. Ramesh, U. K. Lilhore, M. Poongodi, S. Simaiya, A. Kaur, and M. Hamdi, ‘‘Predictive analysis of heart diseases with machine learning approaches,’’ Malaysian J. Comput. Sci., vol. 2022, no. 1, pp. 132–148, 2022.
Brendan McMahan, Eider Moore, Daniel Ramage “Communication-Efficient Learning of Deep Networks from Decentralized Data” 26 jan 2023.
K. Kanagarathinam, D. Sankaran, and R. Manikandan, ‘‘Machine learning-based risk prediction model for cardiovascular disease using a hybrid dataset,’’ Data Knowl. Eng., vol. 140, Jul. 2022, Art. no. 102042.
M. Ordikhani, M. Saniee Abadeh, C. Prugger, R. Hassannejad, N. Mohammadifard, and N. Sarrafzadegan, ‘‘An evolutionary machine learning algorithm for cardiovascular disease risk prediction,’’ PLoS ONE, vol. 17, no. 7, Jul. 2022, Art. no. e0271723.
N.A.Vinay,K.N.Vidyasagar,S.Rohith,P.Dayananda,S.Supreeth,and S.H.Bharathi,‘‘AnRNN-BiLSTMbasedmultidecisionGANapproach for the recognition of cardiovascular disease (CVD) from heart beat sound:Afeatureoptimizationprocess,’’IEEEAccess,vol.12,pp.65482– 65502, 2024.
N. I. Hasan and A. Bhattacharjee, ‘‘Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition,’’ Biomed. Signal Process. Control, vol. 52, pp. 128–140, Jul. 2019.
B. Paul and B. Karn, ‘‘Heart disease prediction using scaled conjugate gradient backpropagation of artificial neural network,’’ Soft Comput., vol. 27, no. 10, pp. 6687–6702, May 2023.
O. W. Samuel, G. M. Asogbon, A. K. Sangaiah, P. Fang, and G. Li, ‘‘An integrated decision support system based on ANN and fuzzy_AHP forheartfailureriskprediction,’’ExpertSyst.Appl.,vol.68,pp. 163–172, Feb. 2017.
O. Yildirim, M. Talo, E. J. Ciaccio, R. S. Tan, and U. R. Acharya, ‘‘Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records,’’ Comput. Methods Programs Biomed., vol. 197, Dec. 2020, Art. no. 105740.
S. Kuila, N. Dhanda, and S. Joardar, ‘‘ECG signal classification to detect heart arrhythmia using ELM and CNN,’’ Multimedia Tools Appl., vol. 82, no. 19, pp. 29857–29881, Aug. 2023, doi: 10.1007/s11042022-14233-9.
B. Kong, Y. Zhan, M. Shin, T. Denny, and S. Zhang, ‘‘Recognizing end-diastole and end-systole frames via deep temporal regression network,’’ in Proc. 19th Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. (MICCAI), vol. 19. Athens, Greece: Springer, Oct. 2016, pp. 264–272.
C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai, and D. Rueckert, ‘‘Deep learning for cardiac image segmentation: A review,’’ Frontiers Cardiovascular Med., vol. 7, p. 25, Mar. 2020.
M. E. Hinchcliff, T. M. Frech, T. A. Wood, C.-C. Huang, J. Lee, K. Aren, J. J. Ryan, B. Wilson, L. Beussink-Nelson, M. L. Whitfield, R. C. Deo, and S. J. Shah, ‘‘Machine learning of the cardiac phenome and skin transcriptome to categorize heart disease in systemic sclerosis,’’ BioRxiv, 2017, Art. no. 213678.
L. Verma, S. Srivastava, and P. C. Negi, ‘‘A hybrid data mining model topredictcoronaryarterydiseasecasesusingnon-invasiveclinicaldata,’’ J. Med. Syst., vol. 40, no. 7, p. 178, Jul. 2016.
S. Prabhu, S. Gupta, G. M. Prabhu, A. V. Dhanuka, and K. V. Bhat, ‘‘QuCardio: Application of quantum machine learning for detection of cardiovascular diseases,’’ IEEE Access, vol. 11, pp. 136122–136135, 2023.
S. Mohan, C. Thirumalai, and G. Srivastava, ‘‘Effective heart disease prediction using hybrid machine learning techniques,’’ IEEE Access, vol. 7, pp. 81542–81554, 2019.
M. Degirmenci, M. A. Ozdemir, E. Izci, and A. Akan, ‘‘Arrhythmic heartbeat classification using 2D convolutional neural networks,’’ IRBM, vol. 43, no. 5, pp. 422–433, 2022, doi: 10.1016/j.irbm. 2021.04.002.
O.Terrada,B.Cherradi,A.Raihani,andO.Bouattane,‘‘Anovelmedical diagnosis support system for predicting patients with atherosclerosis diseases,’’ Inform. Med. Unlocked, vol. 21, Jan. 2020, Art. no. 100483.
A. Dutta, T. Batabyal, M. Basu, and S. T. Acton, ‘‘An efficient convolutional neural network for coronary heart disease prediction,’’ Expert Syst. Appl., vol. 159, Nov. 2020, Art. no. 113408.
S. Ahmed, S. Shaikh, F. Ikram, M. Fayaz, H. S. Alwageed, F. Khan, and F. H. Jaskani, ‘‘Prediction of cardiovascular disease on selfaugmented datasets of heart patients using multiple machine learning models,’’ J. Sensors, vol. 2022, no. 1, 2022, Art. no. 3730303.
C.Chen,W.Bai,R.H.Davies,A.N.Bhuva,C.H.Manisty,J.B.Augusto, J. C. Moon, N. Aung, A. M. Lee, M. M. Sanghvi, K. Fung, J. M. Paiva, S. E. Petersen, E. Lukaschuk, S. K. Piechnik, S. Neubauer, and D. Rueckert, ‘‘Improving the generalizability of convolutional neural network-basedsegmentationonCMRimages,’’FrontiersCardiovascular Med., vol. 7, p. 105, Jun. 2020
M. Blanchard, M. Feuilloy, A. Sabil, C. Gervès-Pinquié, F. Gagnadoux, and J.-M. Girault, ‘‘A deep survival learning approach for cardiovascular risk estimation in patients with sleep Apnea,’’ IEEE Access, vol. 10, pp. 133468–133478, 2022.
S. Ahmad, M. Z. Asghar, F. M. Alotaibi, and Y. D. Alotaibi, ‘‘Diagnosis of cardiovascular disease using deep learning technique,’’ Soft Comput., vol. 27, no. 13, pp. 8971–8990, 2023.
R. R. Sarra, A. M. Dinar, and M. A. Mohammed, ‘‘Enhanced accuracy for heart disease prediction using artificial neural network,’’ Indonesian J. Elect. Eng. Comput. Sci., vol. 29, no. 1, pp. 375–383, 2022.
U. Nagavelli, D. Samanta, and P. Chakraborty, ‘‘Machine learning technology-based heart disease detection models,’’ J. Healthcare Eng., vol. 2022, Feb. 2022, Art. no. 7351061.
K. Subhadra and B. Vikas, ‘‘Neural network based intelligent system for predicting heart disease,’’ Int. J. Innov. Technol. Exploring Eng., vol. 8, no. 5, pp. 484–487, 2019.
V. D. A. Kumar, C. Swarup, I. Murugan, A. Kumar, K. U. Singh, and T. Singh, ‘‘Prediction of cardiovascular disease using machine learning technique—A modern approach,’’ Comput., Mater. Continua, vol. 71, no. 1, pp. 855–869, 2022.
E. R. Pujadas, Z. Raisi-Estabragh, L. Szabo, C. McCracken, C. I. Morcillo, V. M. Campello, C. Martín-Isla, A. M. Atehortua, H. Vago, B. Merkely, P. Maurovich-Horvat, N. C. Harvey, S. Neubauer, S. E. Petersen, and K. Lekadir, ‘‘Prediction of incident cardiovascular events using machine learning and CMR radiomics,’’ Eur. Radiol., vol. 33, no. 5, pp. 3488–3500, Dec. 2022.
Maria Trigka and Elias Dritsas “Improving Cardiovascular Disease Prediction With Deep Learning and Correlation-Aware SMOTE”I EEE Xplore,vol 13,march 2025.
J. Betancur, F. Commandeur, M. Motlagh, T. Sharir, A. J. Einstein, S. Bokhari, M. B. Fish, T. D. Ruddy, P. Kaufmann, A. J. Sinusas, E. J. Miller, T. M. Bateman, S. Dorbala, M. Di Carli, G. Germano, Y. Otaki, B. K. Tamarappoo, D. Dey, D. S. Berman, and P. J. Slomka, ‘‘Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT,’’ JACC: Cardiovascular Imag., vol. 11, no. 11, pp. 1654–1663, Nov. 2018.
A. Rath, D. Mishra, G. Panda, and S. C. Satapathy, ‘‘Heart disease detection using deep learning methods from imbalanced ECG samples,’’ Biomed.SignalProcess.Control,vol.68,Jul.2021,Art. no. 102820.
K. Anetta, A. Horak, W. Wojakowski, K. Wita, and T. Jadczyk, ‘‘Deep learning analysis of Polish electronic health records for diagnosis prediction in patients with cardiovascular diseases,’’ J. Personalized Med., vol. 12, no. 6, p. 869, May 2022.
M. U. Khan, S. Samer, M. D. Alshehri, N. K. Baloch, H. Khan, F. Hussain, S. W. Kim, and Y. B. Zikria, ‘‘Artificial neural networkbased cardiovascular disease prediction using spectral features,’’ Comput. Electr. Eng., vol. 101, Jul. 2022, Art. no. 108094.
Y. Feng, A. A. Leung, X. Lu, Z. Liang, H. Quan, and R. L. Walker, ‘‘Personalized prediction of incident hospitalization for cardiovascular diseaseinpatientswithhypertensionusingmachinelearning,’’BMCMed. Res. Methodol., vol. 22, no. 1, p. 325, Dec. 2022.
S. Dami and M. Yahaghizadeh, ‘‘Predicting cardiovascular events with deep learning approach in the context of the Internet of Things,’’ Neural Comput. Appl., vol. 33, no. 13, pp. 7979–7996, Jul. 2021.
V. Srilakshmi, K. Anuradha, and C. Shoba Bindu, ‘‘Intelligent decision support system for cardiovascular risk prediction using hybrid loss deep joint segmentation and optimized deep learning,’’ Adv. Eng. Softw., vol. 173, Nov. 2022, Art. no. 103198.
A. Almulihi, H. Saleh, A. M. Hussien, S. Mostafa, S. El-Sappagh, K. Alnowaiser, A. A. Ali, and M. Refaat Hassan, ‘‘Ensemble learning based on hybrid deep learning model for heart disease early prediction,’’ Diagnostics, vol. 12, no. 12, p. 3215, Dec. 2022.
A. M. Johri, K. V. Singh, L. E. Mantella, L. Saba, A. Sharma, J. R. Laird, K. Utkarsh, I. M. Singh, S. Gupta, M. S. Kalra, and J. S. Suri, ‘‘Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization,’’ Comput. Biol. Med., vol. 150, Nov. 2022, Art. no. 106018.
B. A. S. Oliveira, G. Z. Castro, G. L. M. Ferreira, and F. G. Guimarães, ‘‘CML-Cardio: A cascade machine learning model to predict cardiovascular disease risk as a primary prevention strategy,’’ Med. Biol. Eng. Comput., vol. 61, no. 6, pp. 1409–1425, Jun. 2023.
P.Esmaeili,N.Roshanravan,S.Mousavi,S.Ghaffari,N.MesriAlamdari, andM.Asghari-Jafarabadi,‘‘Machinelearningframeworkforatherosclerotic cardiovascular disease risk assessment,’’ J. Diabetes Metabolic Disorders, vol. 22, no. 1, pp. 423–430, Nov. 2022.
I. Mishra and S. Mohapatra, ‘‘An enhanced approach for analyzing the performance of heart stroke prediction with machine learning techniques,’’ Int. J. Inf. Technol., vol. 15, no. 6, pp. 3257–3270, Aug. 2023.
G. S. Bhavekar and A. D. Goswami, ‘‘A hybrid model for heart disease prediction using recurrent neural network and long short term memory,’’ Int. J. Inf. Technol., vol. 14, no. 4, pp. 1781–1789, Jun. 2022.
Dhaval Rabadiya,Shailesh Rastogi, Dharmendra Pandey “Enhanced Cardiovascular Disease Prediction Using Advanced Machine Learning with Hybrid Feature Selection” 2024 Fourth IEEE International Conference on “Multimedia Processing Communication and Information Technology”-MPCIT 2024.
R. R. Irshad, S. Hussain, I. Hussain, A. A. Alattab, A. Yousif, O. A. S. Alsaiari, and E. I. I. Ibrahim, ‘‘A novel artificial spider monkey based random forest hybrid framework for monitoring and predictive diagnoses of patients healthcare,’’ IEEE Access, vol. 11, pp. 77880–77894, 2023.
Q. Lyu, H. Shan, Y. Xie, A. C. Kwan, Y. Otaki, K. Kuronuma, D. Li, and G. Wang, ‘‘Cine cardiac MRI motion artifact reduction using a recurrent neuralnetwork,’’IEEETrans.Med.Imag.,vol.40,no.8,pp. 2170–2181, Aug. 2021.
Navita,Pooja Mittal,Yogesh Kumar Sharma,Umesh Kumar Lilhorn,Sarita Si maiya,Kashif Saleem,Ehab Seif Ghith“Advanced Hybrid Machine Learning Model for Accurate Detection of Cardiovascular Disease” Int J Comput Intell Syst 14 February 2025.
Ahmed Almulihi,Hager Saleh ,Ali Mohamed Hussien,Sherif Mostafa, Shaker El-Sappagh,Khaled Alnowaiser, Abdelmgeid A. Ali and Moatamad Refaat Hassan “Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction” Diagnostics 2022.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.