Restoration of Sitting Balance and Bladder Control via Epidural Stimulation in SCI: A Clinical Study

Authors

  • Surbhi Kaura
  • Shahiduz Zafar
  • Pritam Majumdar

Abstract

Background: Spinal cord injury (SCI) often results in impaired mobility and bladder dysfunction, significantly reducing an individual's quality of life. Epidural spinal cord stimulation (ESCS) has shown potential in enhancing functional outcomes in individuals with SCI by modulating spinal neural circuits.

Methodology: This study investigated the effects of ESCS on walking ability, sitting balance, and bladder function in individuals with thoracic SCI. Ten (10) participants with lesions ranging from T6 to T10 underwent an 8-week intervention. Functional assessments were conducted pre- and post-intervention using the Timed Up and Go (TUG) test, the Function in Sitting Test (FIST), and the Neurogenic Bladder Symptom Score (NBSS). We performed Paired t-tests to analyze the significance of changes across the measured variables.

Results: Statistical analysis demonstrated significant improvements in all three outcome measures. The average TUG time decreased by 385.4 seconds (p < 0.0001), indicating improved mobility. FIST scores showed improvement by an average of 31.9 points (p < 0.0001), reflecting enhanced sitting balance. NBSS scores decreased by 13.4 points (p < 0.0001), suggesting improved bladder function. The effect sizes were large across all measures, supporting the clinical relevance of the findings.

Conclusion: ESCS appears to be a promising therapeutic approach for enhancing mobility, postural control, and bladder function in individuals with thoracic SCI. These findings support the integration of ESCS into rehabilitation protocols to enhance quality of life in this population.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Kanna, R. M., Peddireddy, S., Shetty, A. P., & Rajasekaran, S. (2022). Patterns of Traumatic Spinal Injuries in the Developing World: A Five-Year Longitudinal Review. Asian spine journal, 16(5), 658–665. https://doi.org/10.31616/asj.2021.0301.

Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med. 2018;379(13):1244-50.

Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11):1677-82.

Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563(7729):65-71.

Simpson LA, Eng JJ, Hsieh JT, Wolfe DL. The health and life priorities of individuals with spinal cord injury: A systematic review. J Neurotrauma. 2012;29(8):1548-55.

Rejc E, Angeli CA, Bryant N, Harkema SJ. Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics. J Neurotrauma. 2017;34(9):1787-802.

Gad PN, Kreydin E, Zhong H, Latack K, Edgerton VR. Non-invasive neuromodulation of spinal cord restores lower urinary tract function after paralysis. Front Neurosci. 2018;12:432.

Herrity AN, Williams CS, Angeli CA, Harkema SJ, Hubscher CH. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep. 2018;8(1):8688.

Fouad, K., Popovich, P. G., Kopp, M. A., & Schwab, J. M. (2021). The neuroanatomical–functional paradox in spinal cord injury. Nature Reviews Neurology, 17(1), 53–62. https://doi.org/10.1038/s41582-020-00420-9

Gerasimenko, Y., Gorodnichev, R., Machueva, E., Puhov, A., Sayenko, D., Gad, P., & Edgerton, V. R. (2015). Transcutaneous electrical spinal-cord stimulation in humans. Annals of Physical and Rehabilitation Medicine, 58(4), 225–231. https://doi.org/10.1016/j.rehab.2015.05.003

Harkema, S., Gerasimenko, Y., Hodes, J., Burdick, J., Angeli, C., Chen, Y., & Rejc, E. (2018). Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. The Lancet, 377(9770), 1938–1947. https://doi.org/10.1016/S0140-6736(11)60547-3

Minassian, K., Hofstoetter, U. S., Danner, S. M., Mayr, W., Bruce, J. A., McKay, W. B., & Tansey, K. E. (2017). Mechanisms of epidural spinal cord stimulation for locomotor recovery after spinal cord injury. Brain Research, 1646, 31–45. https://doi.org/10.1016/j.brainres.2016.12.028

Rupp, R., Biering-Sørensen, F., Burns, S. P., Graves, D. E., Guest, J., Jones, L., Read, M. S., Rodriguez, G. M., Schuld, C., Tansey-Md, K. E., Walden, K., & Kirshblum, S. (2021). International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Topics in spinal cord injury rehabilitation, 27(2), 1–22. https://doi.org/10.46292/sci2702-1

Patel, D. P., Elliott, S. P., Stoffel, J. T., McVary, K. T., & Dmochowski, R. R. (2016). The Neurogenic Bladder Symptom Score (NBSS): A comprehensive, validated outcome measure for neurogenic bladder. The Journal of Urology, 195(1), 182–189. https://doi.org/10.1016/j.juro.2015.07.086

Podsiadlo, D., & Richardson, S. (1991). The timed "Up & Go": A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142–148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x

Rejc, E., Angeli, C. A., Atkinson, D., & Harkema, S. J. (2017). Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Scientific Reports, 7(1), 13476. https://doi.org/10.1038/s41598-017-14003-w

Gorman, S. L., Radtka, S., McLean, J., & Manor, B. (2014). The Function in Sitting Test (FIST): Reliability, validity, and responsiveness in adults with acute stroke. Journal of Neurologic Physical Therapy, 38(1), 42–48. https://doi.org/10.1097/NPT.0000000000000028

Dimitrijevic, M. R., Faganel, J., Sherwood, A. M., & McKay, W. B. (2015). Motor control in spinal cord injury patients: Neural mechanisms and rehabilitation strategies. Neuroscience Research, 92(3), 291–301. https://doi.org/10.1016/j.neures.2015.09.012

Borton, D. A., Burdick, J. W., Tu-Chan, A., Gerasimenko, Y., & Harkema, S. (2019). Neuromodulation of spinal circuits restores motor function after spinal cord injury. Nature Neuroscience, 22(9), 1228–1237. https://doi.org/10.1038/s41593-019-0435-3

Calvert, J. S., Grahn, P. J., Zhao, K. D., Lee, K. H., & Lavrov, I. A. (2020). Electrical neuromodulation of the spinal cord: Current approaches and future directions. Neuroscientist, 26(1), 92–109. https://doi.org/10.1177/1073858419865415

Courtine, G., Song, B., Roy, R. R., Zhong, H., Herrmann, S. D., & Edgerton, V. R. (2020). Recovery of supraspinal control of stepping via indirect pathways in the adult spinal cord. Nature Medicine, 29(3), 222–230. https://doi.org/10.1038/s41591-019-0613-5

Taccola, G., Sayenko, D. G., Gad, P., & Gerasimenko, Y. P. (2018). Neuromodulation of spinal networks: From basic science to clinical applications. Brain Sciences, 8(7), 116. https://doi.org/10.3390/brainsci8070116

Darrow, D., Balser, D., Netoff, T., & Krassioukov, A. (2019). Epidural spinal cord stimulation facilitates immediate recovery of autonomic cardiovascular control in spinal cord injury. Journal of Neurophysiology, 121(4), 1224–1231. https://doi.org/10.1152/jn.00701.2018

Grahn, P. J., Lavrov, I. A., Sayenko, D. G., & Lee, K. H. (2017). Spinal neuromodulation strategies: Emerging applications in restoring function after spinal cord injury. Mayo Clinic Proceedings, 92(3), 512–524. https://doi.org/10.1016/j.mayocp.2016.12.016

Sayenko, D. G., Rath, M., Ferguson, A. R., Burdick, J. W., Havton, L. A., & Edgerton, V. R. (2019). Spinal stimulation for recovery of bladder function after spinal cord injury: Mechanisms and clinical implications. Nature Reviews Urology, 16(5), 271–280. https://doi.org/10.1038/s41585-019-0164-7

Kirshblum, S., Waring, W., Biering-Sørensen, F., Burns, S. P., Johansen, M., Schmidt-Read, M., & Mulcahey, M. J. (2019). International standards for neurological classification of spinal cord injury (ISNCSCI): An update. Spinal Cord, 57(8), 632–643. https://doi.org/10.1038/s41393-019-0300-7

Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the prevalence of traumatic spinal cord injury in the United States. Neuroepidemiology, 30(3), 167–176. https://doi.org/10.1159/000122825

World Medical Association. (2008). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053.

Downloads

Published

2025-06-20

How to Cite

1.
Kaura S, Zafar S, Majumdar P. Restoration of Sitting Balance and Bladder Control via Epidural Stimulation in SCI: A Clinical Study. J Neonatal Surg [Internet]. 2025Jun.20 [cited 2025Jul.15];14(32S). Available from: https://jneonatalsurg.com/index.php/jns/article/view/7439