A Comprehensive Review on Bioethanol Production from Fruit Wastes
Keywords:
Bioethanol, Fruit wastes, Hydrolysis, Fermentation, SaccharificationAbstract
Bioethanol is a green resource of energy which is a product made from fermenting biological components. Fruit waste has high sugar content that act as a crucial factor for producing bioethanol. Bioethanol gained a significant attention as a promising alternative energy roots to gasoline, offering a clean, renewable, and green combustible fuel option. Bioethanol is categorized as three generations. The first-generation bioethanol has made from food crops such as sugarcane and corn, the second-generation non-food lignocellulosic materials like forestry leftovers and agricultural wastes, and the third generation advanced bioethanol incorporate innovative technologies like algae-based bioethanol and genetic engineering. The earliest recorded use of bioethanol was in ancient civilizations, where it was used as an alcoholic beverage. However, its use as a fuel source gained prominence in the 20th century, driven by the need for alternative energy sources. Cellulose is produced from the lignocellulosic mass and then fermented for bioethanol production. Lower lignin content also highlights its potency. Bulk amount of fruit wastes are being disposed throughout the world. They take a long time to degrade and may lead to several environmental threats. Thus choosing fruit waste as a feedstock greater benefits. The producing process of bioethanol contains many steps starts from pretreatment, hydrolysis, fermentation, and ethanol recovery. A pretreatment method involves methods like biological, physical and chemical. Hydrolysis involves production of cellulose from the lignocellulosic biomass. Blending ethanol with gasoline has numerous benefits, including enhancing the number of octane, reducing hydrocarbon emissions, and raising burning capacity. A range of countries have embraced ethanol-blended fuels, varying from E85 (85% ethanol, 15% gasoline) to E10 (10% ethanol, 90% gasoline) with some modifications to vehicle engines.
The bioethanol sector is a central figure in the global transformation to green energy. For bioethanol to become a mainstream energy source, its price needs to be competitive with that of fossil fuels. Governments worldwide have introduced policies like taxes, farm subsidies, and fuel requirements to encourage the production & utilization of biofuels. However, the high cost of producing bioethanol, largely driven by raw material expenses (60–75% of total costs), remains a significant hurdle. Employing cheaper feedstocks, such as waste biomass, and improving production methods can help lower these costs. The profitability of production of bioethanol deviates from one to another region; for example, America and Brazil have different production costs due to their distinct agricultural systems and available resources. Fruit waste stands out as a potentially valuable and cost-effective raw material for bioethanol production because it holds significant amounts of natural sugars, cellulose, and hemicellulose. The Food and Agriculture Organization (FAO) stated that global fruit production attained 887 million metric tonnes in 2020, with China, India, and Brazil being the leading producers. The accumulation of fruit and vegetable waste is a significant issue, with almost 37% of total agricultural waste in Asia being attributed to fruit and vegetable waste This has guided researchers to explore substitute feed stocks and production approaches to reduce costs and increase efficiency. Global fruit production has increased by 59% from 2000 to 2021, reaching a cumulative output of 910 million tons. Massive fruit production and intake led to impactful fruit waste formation, with 41 million tons of fruit waste produced annually. A waste of fruit peel alone aids about 15% - 60% of the fruit waste and mostly junked fruit waste can cause health issue if not properly managed, necessitating a suitable fruit waste management. This review article mainly focuses on highlighting the benefits of using fruit wastes for bioethanol production and the steps involved in it.
Downloads
References
Abera, A. B., & Hatsa, T. M. (2020). Bioethanol production from decaying fruits peel using Saccharomyces cerevisiae. International Journal of Current Research in Academic Review, 8(5), 19–28.
Alleman, T. L., McCormick, R. L., & Yanowitz, J. (2015). Properties of ethanol fuel blends made with natural gasoline. Energy & Fuels, 29(8), 5095–5102. https://doi.org/10.1021/acs.energyfuels.5b00818
Al Masri, M. S., Amin, Y., Al Akel, B., & Al Naama, T. (2010). Biosorption of cadmium, lead, and uranium by powder of poplar leaves and branches. Applied Biochemistry and Biotechnology, 160, 976–987. https://doi.org/10.1007/s12010 009 8735 5
Almeida, J. R. M., et al. (2009). Metabolic effects of furaldehydes and impacts on biotechnological process. Biotechnology for Biofuels, 82(4):625-38.DOI: 10.1007/s00253-009-1875-1
Altınisik, S., Nigiz, F.U., Gurdal, S., Yilmaz, K., Tuncel, N.B., & Koyuncu, S. (2024). Optimization of bioethanol production from sugar beet processing by product molasses using response surface methodology. Biomass Conversion and Biorefinery, 1–14. https://doi.org/10.1007/s13399 024 04567 x
Anonymous. (2017). Comparative studies of bioethanol production from different fruit wastes using Saccharomyces cerevisiae. International Journal of Engineering Research & Technology, 6(04). ISSN:2278‑0181.
Arif, M., Khan, A., & Siddiqui, R. (2018). Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method. Journal of Physics: Conference Series, 979, Article 012015.
Assen, M. R., Mundhenk, J. W., & Balint, P. B. (2024). Bioethanol separation by a new pass-through distillation process. Separation and Purification Technology.
Awad, O. I., El Zaher, A. A., & Hassan, H. M. (2023). Influence of PODE1 additive into ethanol gasoline blends (E10) on fuel properties and phase stability. Heliyon, 9(11), Article e22364. https://doi.org/10.1016/j.heliyon.2023.e22364
Aznury, M., Hartono, S., & Yulianto, A. (2022). Effect of sulfuric acid and fermentation time on bioethanol production from empty fruit bunch (EFB). Atlantis Highlights in Engineering, 9, Article 2022. https://doi.org/10.2991/ahie.k.221217.001
Babu, S., Reddy, L.V., & Rao, M.S. (2014). Optimization of initial pH on ethanol production from fruit juices. Applied Biochemistry and Biotechnology, 174(4), 1234–1242. https://doi.org/10.1007/s12010 014 0736 8
Balan, V. (2014). Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnology, 2014.DOI: 10.1155/2014/463074
Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52(2), 858-875. https://doi.org/10.1016/j.enconman.2010.08.013
Barecka, M., Dameni, P. D., Muhamad, M. Z., Ager, J., & Lapkin, A. (2023). Energy efficient ethanol concentration method for scalable CO₂ electrolysis. e Print arXiv:2301.10324.
Barua, S., Sahu, D., Sultana, F., Baruah, S., & Mahapatra, S. (2023). Bioethanol, internal combustion engines and the development of zero-waste biorefineries: An approach towards sustainable motor spirit. RSC Sustainability, 1(5), 1065–1084.
Bayitse, R., Hou, X., Bjerre, A. B., & Saalia, F. K. (2015). Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars. AMB Express, 5, Article 1–7. https://doi.org/10.1186/s13568 015 0139 1
Belyea, R. L., Rausch, K. D., & Tumbleson, M. E. (2004). Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresource Technology, 94(3), 293–298.
https://doi.org/10.1016/j.biortech.2004.01.001
Benjamin, C., Singh, P. K., Dipuraj, P. S., Singh, A., Rath, S., Kumar, Y., & Peter, J. (2014). Bio ethanol production from banana peel by simultaneous saccharification and fermentation process using cocultures Aspergillus niger and Saccharomyces cerevisiae. International Journal of Current Microbiology and Applied Sciences, 3(5), 84–96.
Berlowska, J., Pielech Przybylska, K., Balcerek, M., Cieciura, W., Borowski, S., & Kegiel, D. (2017). Integrated bioethanol fermentation/anaerobic digestion for valorization of sugar beet pulp. Energies, 10(9), Article 1255. https://doi.org/10.3390/en10091255
Bharadwaj, R. P., Raju, N. G., & Chandrashekharaiah, K. S. (2018). Purification and characterization of alpha amylase inhibitor from the seeds of underutilized legume, Mucuna pruriens. Journal of Food Biochemistry, 42(6), Article e12686. https://doi.org/10.1111/jfbc.12686
Biswas, B., Kumar, A., Fernandes, A. C., Saini, K., Negi, S., Muraleedharan, U. D., & Bhaskar, T. (2020). Solid base catalytic hydrothermal liquefaction of macroalgae: Effects of process parameter on product yield and characterization. Bioresource Technology, 307, Article 123232. https://doi.org/10.1016/j.biortech.2020.123232
Borah, D., & Mishra, V. (2011). Production of bio fuel from fruit waste. International Journal of Advanced Biotechnology Research, 1, 71–74.
Celis, L. B., Gallegos Garcia, M., Vidriales, G., & Razo Flores, E. (2013). Rapid start up of a sulfidogenic biofilm reactor: Overcoming low acetate consumption. Journal of Chemical Technology & Biotechnology, 88(9), 1672–1679. https://doi.org/10.1002/jctb.4023
Chamchoi, N. (2019). Utilization of fruit waste for bioethanol production by co cultures of Aspergillus niger and Saccharomyces cerevisiae. Applied Environmental Research, 41(2), 63–72.
Chaudhary, A., Hussain, Z., Aihetasham, A., El Sharnouby, M., Rehman, R. A., Khan, M. A. U., & Qamer, S. (2021). Pomegranate peels waste hydrolyzate optimization by response surface methodology for bioethanol production. Saudi Journal of Biological Sciences, 28(9), 4867–4875. https://doi.org/10.1016/j.sjbs.2021.05.066
Chelgani, S. C., & Jorjani, E. (2011). Microwave irradiation pretreatment and peroxyacetic acid desulfurization of coal and application of GRNN simultaneous predictor. Fuel, 90(11), 3156–3163. https://doi.org/10.1016/j.fuel.2011.06.041
Cheng, H.-Y., Xu, A.-A., Awasthi, M. K., Kong, D.-D., Chen, J.-S., Wang, Y.-F., & Xu, P. (2020). Aerobic denitrification performance and nitrate removal pathway analysis of a novel fungus Fusarium solani RADF-77. Bioresource Technology, 302, 122833. https://doi.org/10.1016/j.biortech.2020.122833
Chitranshi, R., & Kapoor, R. (2021). Utilization of over ripened fruit (waste fruit) for the ecofriendly production of ethanol. Vegetos, 34(1), 270–276. https://doi.org/10.1007/s42535‑020‑00185‑8
Chongkhong, S. (2017). Response surface optimization of ethanol production from banana peels by organic acid hydrolysis and fermentation. Songklanakarin Journal of Science and Technology.
Christofoletti, C. A., Silva, S. S., Maciel Filho, R., & de Carvalho, J. C. M. (2013). Vinasse: Environmental implications of its use. Waste Management, 33(12), 2752–2761. https://doi.org/10.1016/j.wasman.2013.07.007
Conde Mejía, C., & Jiménez Gutiérrez, A. (2020). Analysis of ethanol dehydration using membrane separation processes. Open Life Sciences, 15(1), 122–132. https://doi.org/10.1515/biol‑2020‑0013
Dandasena, T., & Shahi, S. (2023). A renewable biofuel bioethanol: A review. Journal of Advanced Zoology, 44, 1698–1706. https://doi.org/10.17762/jaz.v44iS3.2388
Darvishi, F., & Abolhasan Moghaddami, N. (2019). Optimization of an industrial medium from molasses for bioethanol production using the Taguchi statistical experimental design method. Fermentation, 5(1), Article 14. https://doi.org/10.3390/fermentation5010014
De Silva, R., Perera, S., & Fernando, W. (2022). Comparative bioethanol production from banana and grape wastes at varying pH. Bioresource Technology Reports, 17, Article 100864. https://doi.org/10.1016/j.biteb.2022.100864
De Silva, S.J., Arachchige, U.S., & Nilmini, A. (2022). Comparative study of bioethanol from waste banana fruits and grape fruits. Asian Journal of Chemistry, 34(9), 2253–2256. https://doi.org/10.14233/ajchem.2022.24115
Demiray, E., Karatay, S. E., & Dönmez, G. (2019). Improvement of bioethanol production from pomegranate peels via acidic pretreatment and enzymatic hydrolysis. Environmental Science and Pollution Research, 26, 29366–29378. https://doi.org/10.1007/s11356 019 06230 z
Demirbas, A. (2005). Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources, 27(4), 327–337. https://doi.org/10.1080/009083190968768
Dhanaseeli, P. B., & Balasubramanian, V. (2021). Studies of ethanol production from different fruit wastes using Saccharomyces cerevisiae. Biotechnology Reports, 11(Spl. Edn. 1), 19–23. https://doi.org/10.13005/bbra/1386
Dhital, S., Gidley, M. J., & Warren, F. J. (2015). Inhibition of α amylase activity by cellulose: Kinetic analysis and nutritional implications. Carbohydrate Polymers, 123, 305–312. https://doi.org/10.1016/j.carbpol.2014.12.041
El Gendy, N. S., Madian, H. R., & Abu Amr, S. S. (2013). Design and optimization of a process for sugarcane molasses fermentation by Saccharomyces cerevisiae using response surface methodology. ISRN Biotechnology, 2013, Article 815631. https://doi.org/10.5402/2013/815631
Errico, M., Madeddu, C., Bindseil, M. F., Madsen, S. D., Braekevelt, S., & Camilleri Rumbau, M. S. (2020). Membrane assisted reactive distillation for bioethanol purification. Chemical Engineering and Processing: Process Intensification, 150, Article 108110. https://doi.org/10.1016/j.cep.2020.108110
Fromanger, R., Guillouet, S. E., Uribelarrea, J. L., Molina Jouve, C., & Cameleyre, X. (2010). Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose. Journal of Industrial Microbiology and Biotechnology, 37(5), 437–445. https://doi.org/10.1007/s10295 010 0657 1
Fuess, L. T., & Garcia, M. L. (2014). Implications of stillage land disposal: A critical review. Renewable and Sustainable Energy Reviews, 39, 616–629. https://doi.org/10.1016/j.rser.2014.07.203
Garcia Mariaca, A., Villalba, J., Castario, R., & Bailera, M. (2025). Performance and emissions of spark ignition internal combustion engine operating with bioethanol–gasoline blends at high altitudes under low and high speed conditions. Energies, 18, Article 1401. https://doi.org/10.3390/en18061401
Garcia, A., Monsalve Serrano, J., Martinez Boggio, S., Roso, V. R., & Santos, N. D. S. A. (2020). Potential of bio ethanol in different advanced combustion modes for hybrid passenger vehicles. Renewable Energy, 150, 58–77. https://doi.org/10.1016/j.renene.2019.11.161
Gavrila, A. I., Vartolomei, A., Calinescu, I., Vinatoru, M., Parvulescu, O. C., Psenovschi, G., & Trifan, A. (2024). Ultrasound assisted alkaline pretreatment of biomass to enhance the extraction yield of valuable chemicals. Agronomy, 14(5), Article 903. https://doi.org/10.3390/agronomy14050903
Gebresemati, M., & Gebregergs, A. (2015). Optimization of banana peels hydrolysis for the production of bioethanol: Response surface methodology. International Letters of Natural Sciences, 48, 53–60. https://doi.org/10.18052/www.scipress.com/ILNS.48.53
Germec, M., & Turhan, I. (2018). Ethanol production from acid pretreated and detoxified rice straw as sole renewable resource. Biomass Conversion and Biorefinery, 8(3), 607–619. https://doi.org/10.1007/s13399 017 0295 8
Ghani, M. R. A., & Ching, O. P. (2014). Optimization of ethanol production from mango peels using response surface methodology. Applied Mechanics and Materials, 625, 766–769. https://doi.org/10.4028/www.scientific.net/AMM.625.766
Golębiewska, E., Kalinowska, M., & Yildiz, G. (2022). Sustainable use of apple pomace (AP) in different industrial sectors. Materials, 15(5), Article 1788. https://doi.org/10.3390/ma15051788
Goshima, T., Tsuji, M., Inoue, H., Yano, S., Hoshino, T., & Matsushika, A. (2013). Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Bioscience, Biotechnology, and Biochemistry, 77(7), 1505–1510. https://doi.org/10.1271/bbb.130217
Hagman, A., Sall, T., Compagno, C., & Piskur, J. (2014). Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Research, 14(6), 826–832. https://doi.org/10.1111/1567 1364.12158
Hahn-Hägerdal, B., et al. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–53.DOI: 10.1007/s00253-006-0827-2
Hamden, Z., El Ghoul, Y., Alminderej, F. M., Saleh, S. M., & Majdoub, H. (2022). High quality bioethanol and vinegar production from Saudi Arabia dates: Characterization and evaluation of their value and antioxidant efficiency. Antioxidants, 11(6), Article 1155. https://doi.org/10.3390/antiox11061155
Hamelinck, C. N., van Hooijdonk, G., & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28(4), 384–410.
Hashem, M., Alamri, S. A., Asseri, T. A. Y., Mostafa, Y. S., Lyberatos, G., & Ntaikou, I. (2023). On the optimization of fermentation conditions for enhanced bioethanol yields from starchy biowaste via yeast co cultures. [Conference paper].
Hawas, M., Mohammed, A., & Fahem, A. H. (2020). Improvement of the performance and efficiency of turbocharging spark ignition engine by using blended bioethanol fuel. Journal of Engineering Science and Technology, 15, 3547–3558.
Hawaz, E., Tafesse, M., Tesfaye, A., & Kiros, S.(2023). Optimization of bioethanol production from sugarcane molasses by the response surface methodology using Meyerozyma caribbica isolate MJTm3. Annals of Microbiology, 73(2), Article 2.
Hawaz, E., Tafesse, M., Tesfaye, A., Kiros, S., Beyene, D., Kebede, G., Muleta, D. (2024). Bioethanol production from sugarcane molasses by co fermentation of Saccharomyces cerevisiae isolate TA2 and Wickerhamomyces anomalus isolate HCJ2F 19. Annals of Microbiology, 74(1), Article 13. https://doi.org/10.1007/s13213 023 01865 z
Herman, M., Johnson, E., & Nguyen, T. (2015). A study on the fundamental mechanism and the evolutionary basis of the Crabtree effect in Saccharomyces cerevisiae. PLoS ONE, 10(12), Article e0144915.
Hong, Y. Y., Wang, Y. T., Zhu, S. M., Luo, X. C., Li, S., Zhuo, M., & Zhu, M. J. (2019). Improved enzymatic hydrolysis and ethanol production by combined alkaline peroxide and ionic liquid–water mixtures pretreatment of rice straw. Journal of Chemical Technology & Biotechnology, 94(5), 1451–1459. https://doi.org/10.1002/jctb.5941
Hopfe, S., Konsulke, S., Barthen, R., Lehmann, F., Kutschke, S., & Pollmann, K. (2018). Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder. Minerals Engineering, 123, 30-38. https://doi.org/10.1016/j.mineng.2018.08.010
Hossain, A. B. M., Yusoff, W. M. W., & Veettil, V. N. (2019). Bioethanol production from fruit biomass as bio antiseptic and bio antifermenter: Its chemical and biochemical properties. Journal of Applied Sciences, 19(4), 311–318. https://doi.org/10.3923/jas.2019.311.318
Hossain, A.S. (2023). Reducing sugar estimation and bioethanol production from banana, pineapple and mango fruit wastes. International Journal of Biotech Trends and Technology, 13(1), 1–6.
Imad, M., & Castro Munoz, R. (2023). Ongoing progress on pervaporation membranes for ethanol separation. Membranes, 13(10), Article 848. https://doi.org/10.3390/membranes13100848
Iodice, P., & Amoresano, A. (2021). A review on the effects of ethanol/gasoline fuel blends on NOₓ emissions in spark ignition engines. Biofuel Research Journal, 32, 1465–1480. https://doi.org/10.18331/BRJ2021.8.4.2
Itelima, J., Onwuliri, F., Onwuliri, E., Onyimba, I., & Oforji, S. (2013). Bio ethanol production from banana, plantain and pineapple peels by simultaneous saccharification and fermentation process. [Journal name not provided].
Jahid, M., Gupta, A., & Sharma, D.K. (2018). Production of bioethanol from fruit wastes (banana, papaya, pineapple and mango peels) under milder conditions. Journal of Bioprocessing & Biotechniques, 8(3), 327.
https://doi.org/10.4172/2155-9821.1000327
Jonsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112.https://doi.org/10.1016/j.biortech.2015.10.009
Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64, 137–145.h ttps://doi.org/10.1007/s00253-003-1537-7
Kannah, Y., Kavitha, S., Sivashanmugam, P., & Kumar, G. (2021). Ultrasonic induced mechanoacoustic effect on delignification of rice straw for cost effective biopretreatment and biomethane recovery. Sustainable Energy & Fuels, 5(6), 1832–1844. https://doi.org/10.1039/D0SE01831C
Kasavi, C., Finore, I., Lama, L., Nicolaus, B., & Poli, A. (2012). Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass & Bioenergy, 45, 230–238. https://doi.org/10.1016/j.biombioe.2012.07.011
Khandaker, M.M., Abdullahi, U.A., Abdulrahman, M.D., Badaluddin, N.A., & Mohd, K.S. (2020). Bio ethanol production from fruit and vegetable waste by using Saccharomyces cerevisiae. In Bioethanol Technologies. IntechOpen. https://doi.org/10.5772/intechopen.94358
Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48(4–5), 408–415.
King, F. G., & Hossain, M. A. (1982). The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotechnology Letters, 4, 531–536. https://doi.org/10.1007/BF01025324
KK, Gireesh Kumar; V, Priya Senan (2020). Bioethanol production from local fruit waste and its optimization. Indian Journal of Experimental Biology, 58(12). doi: 10.56042/ijebv58i12.44588.
Krogell, J., Eranen, K., Pranovich, A., & Willfor, S. (2015). In line high temperature pH control during hot water extraction of wood. Industrial Crops and Products, 67, 114–120.
Kumar, A., Singh, A., & Sharma, V. (2016). Characterization and recycling of distillery spent wash through vermicomposting. Ecological Engineering, 94, 16–23.
Kuriyama, H., & Kobayashi, H. (1993). Effects of oxygen supply on yeast growth and metabolism in continuous fermentation. Journal of Fermentation and Bioengineering, 75(5), 364–367. https://doi.org/10.1016/0922 338X (93)90007 9
Kuyper, M., Hartog, M. M. P., Toirkens, M. J., Almering, M. J. H., Winkler, A. A., van Dijken, J. P., & Pronk, J. T. (2005). Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research, 5(4–5), 399–409. https://doi.org/10.1016/j.femsyr.2004.09.010
Laluce, C., Tognolli, J. O., De Oliveira, K. F., Souza, C. S., & Morais, M. R. (2009). Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability. Applied Microbiology and Biotechnology, 83, 627–637. https://doi.org/10.1007/s00253 009 1886 3
Larsen, J., Haven, M. Ø., & Thirup, L. (2012). Inbicon makes lignocellulosic ethanol a commercial reality. Biomass & Bioenergy, 46, 36–45. https://doi.org/10.1016/j.biombioe.2012.03.033
Li, X., Ma, Y., & Li, J. (2020). Optimal design of extractive dividing wall column using an efficient hybrid algorithm. Chemical Engineering Research and Design, 143, Article 107058.
Li, Y., Qi, B., & Wan, Y. (2014). Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass. Bioresource Technology, 167, 324–330.
Li, Y., Zhang, Z., Zhu, S., Zhang, H., Zhang, Y., Zhang, T., & Zhang, Q. (2018). Comparison of bio hydrogen production yield capacity between asynchronous and simultaneous saccharification and fermentation processes from agricultural residue by mixed anaerobic cultures. Bioresource Technology, 247, 1210–1214.
Liu, K. (2011). Chemical composition of distillers grains, a review. Journal of Agricultural and Food Chemistry, 59(5), 1508–1526. https://doi.org/10.1021/jf103512z
Liu, S., Liu, H., Shen, C., Fang, W., Xiao, Y., & Fang, Z. (2021). Comparison of performances of different fungal laccases in delignification and detoxification of alkali pretreated corncob for bioethanol production. Journal of Industrial Microbiology and Biotechnology, 48(1–2), kuab013.
Liu, X., Martin, J. J. J., Li, X., Zhou, L., Li, R., Li, Q., Zhang, J., Fu, D., & Cao, H. (2025). Optimization of the fermentation culture conditions of Bacillus amyloliquefaciens CK 05 using response surface methodology. Frontiers in Microbiology, 16, Article 1552645.
Lynd, L. R., van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16(5), 577-583. https://doi.org/10.1016/j.copbio.2005.08.009
Mahanty, T., Sahoo, D., & Patel, A. (2017). Biofertilizers: Potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315–3335.
Memon, A. A., Shah, F. A., & Kumar, N. (2017, July). Bioethanol production from waste potatoes as a sustainable waste to energy resource via enzymatic hydrolysis. In IOP Conference Series: Earth and Environmental Science (Vol. 73, No. 1, p. 012003). IOP Publishing.
Miao, Y., Chen, J. Y., Jiang, X., & Huang, Z. (2012). Kinetic studies on the product inhibition of enzymatic lignocellulose hydrolysis. Applied Biochemistry and Biotechnology, 167, 358–366.
Micic, V., & Jotanovic, M. (2015). Bioethanol as fuel for internal combustion engines. Zastita Materijala, 56(4), 403–408.
Mnich, M. E., Smith, L., & Brown, P. (2019). Crabtree effect – An overview. In A. Méndez Vilas (Ed.),
Mohammed, M. K., Balla, H. H., Al Dulaimi, Z. M. H., Kareem, Z. S., & Al Zuhairy, M. S. (2021). Effect of ethanol gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering, 25, Article 100891. https://doi.org/10.1016/j.csite.2021.100891
Mohanty, Bedadyuti & Abdullahi, Ismail. (2016). Bioethanol Production from Lignocellulosic Waste-A Review. Biosciences, Biotechnology Research Asia. Doi:13. 1153-1161. 10.13005/bbra/2146.
Molina Garcia, C., Smith, J., Lee, K., & Zhang, L. (2014). Reduction of ethanol yield and improvement of glycerol formation in yeast fermentation. Applied and Environmental Microbiology, 80(15), 4727–4736. https://doi.org/10.1128/AEM.01234 14
Momayez, F., Karimi, K., Karimi, S., & Horvath, I. S. (2017). Efficient hydrolysis and ethanol production from rice straw by pretreatment with organic acids and effluent of biogas plant. RSC Advances, 7(80), 50537–50545. https://doi.org/10.1039/C7RA08873F
Moneruzzaman Khandaker, M., Aliyu Abdullahi, U., Dogara Abdulrahman, M., Afiza Badaluddin, N., & Suryati Mohd, K. (2021). Bio-Ethanol Production from Fruit and Vegetable Waste by Using Saccharomyces cerevisiae. IntechOpen.
Doi: 10.5772/intechopen.94358
Moraes, B. S., Zaiat, M., & Bonomi, A. (2014). Anaerobic digestion of vinasse in Brazil: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 44, 888–903. https://doi.org/10.1016/j.rser.2014.02.021
Moriwaki, M., Herrera Velazquez, J. J., & Cabrera Ruiz, J. (2023). Synthesis of hybrid membrane distillation processes with optimal structures for ethanol dehydration. Computers & Chemical Engineering, 168, Article 108385. https://doi.org/10.1016/j.compchemeng.2023.108385
Moura, E. R., Brandão, M. P., de Assis, M. C., Hocevar, L. S., Coelho, R. S., & Alves, C. T. (2024). Efficient production of second generation ethanol through direct fermentation utilising Saccharomyces cerevisiae with sweet potato peels, beet peels, and sugarcane bagasse juice as feedstocks. Chemical Engineering Transactions, 110, 379–384. https://doi.org/10.3303/CET2411064
Mtashobya, L.A., Mgeni, S.T., & Emmanuel, J.K. (2025). Bioethanol production from concentrated fruit wastes juice using bakery yeast. Materials for Renewable and Sustainable Energy, 14(1), 1–7. https://doi.org/10.1007/s40243 024 00317 7
Muthuvelayudham, R., & Viruthagiri, T. (2010). Application of central composite design based response surface methodology in parameter optimization and on cellulase production using agricultural waste. World Academy of Science, Engineering and Technology, 37, 1026–1033. https://doi.org/10.5281/zenodo.1082157
Nargotra, P., Sharma, V., Sharma, S., Kapoor, N., & Bajaj, B. K. (2020). Development of consolidated bioprocess for biofuel ethanol production from ultrasound assisted deep eutectic solvent pretreated Parthenium hysterophorus biomass. Biomass Conversion and Biorefinery, 10, 1–16. https://doi.org/10.1007/s13399 020 00749 x
Niphadkar, S., Bagade, P., & Ahmed, S. (2018). Bioethanol production: Insight into past, present and future perspectives. Biofuels, 9(2), 229–238. https://doi.org/10.1080/17597269.2017.1334338 Abera, A. B., & Hatsa, T. M. (2020). Bioethanol production from decaying fruits peel using Saccharomyces cerevisiae. International Journal of Current Research in Academic Review, 8(5), 19–28.
Nwogwugwu, N. U., Abu, G. O., & Akaranta, O. (2021). Bioethanol production from an underutilized plant, calabash (Crescentia cujete) using co culture of Saccharomyces cerevisiae and Cronobacter malonaticus. Journal of Advances in Microbiology, 21(4), 17–33.
DOI:10.9734/jamb/2021/v21i430339
Oguri, E., Takimura, O., Matsushika, A., Inoue, H., & Sawayama, S. (2011). Bioethanol production by Pichia stipitis from enzymatic hydrolysates of corncob based spent mushroom substrate. Food Science and Technology Research, 17(4), 267–272. https://doi.org/10.3136/fstr.17.267
Okoye, C. O. B., Alum, O. L., Akpomie, K. G., & Alumona, T. N. (2017). Optimization of the fermentation conditions for the production of bioethanol from cane sugar molasses using Saccharomyces cerevisiae. Science & Technology, 18, 48–56.
Oliveira, M. R. B., Douradinho, R. S., Sica, P., Mota, L. A., Pinto, A. U., Faria, T. M., & Baptista, A. S. (2024). Evaluation of aerobic propagation of yeasts as additional step in production process of corn ethanol. Stresses, 4(2), 380–392. https://doi.org/10.3390/stresses4020025
Olofsson, K., Bertilsson, M. & Lidén, G. A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1, 7 (2008). https://doi.org/10.1186/1754-6834-1-7
Olson, D. G., et al. (2012). Recent progress in consolidated bioprocessing. Current Opinion in Biotechnology, 23(3), 396–405. https://doi.org/10.1016/j.copbio.2011.11.026
Padmi, T., Dewiandratika, M., & Damanhuri, E. (2018). An environmental and economic comparison of fruit and vegetable waste treatment in the traditional markets. GEOMATE Journal, 15(49), 9–16. https://doi.org/10.21660/2018.49.35109
Palacios, S., Ruiz, H. A., Ramos Gonzalez, R., Martinez, J., Segura, E., Aguilar, M., Ilyina, A. (2017). Comparison of physicochemical pretreatments of banana peels for bioethanol production. Food Science and Biotechnology, 26, 993–1001. https://doi.org/10.1007/s10068 017 0128 9
Pandey, A., et al. (2016). Biofuels: Production and future perspectives. Renewable and Sustainable Energy Reviews, (596). https://doi.org/10.1201/9781315370743
Phong HX, Klanrit P, Dung NTP, Thanonkeo S, Yamada M, Thanonkeo P. High-temperature ethanol fermentation from pineapple waste hydrolysate and gene expression analysis of thermotolerant yeast Saccharomyces cerevisiae. Sci Rep. 2022 Aug 17;12(1):13965. doi: 10.1038/s41598-022-18212-w. PMID: 35978081; PMCID: PMC9385605.
Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624–9630. https://doi.org/10.1016/j.biortech.2010.06.137
Raagapriya, K., Sheela, M., Brindha, R., Rethna, A., Hameed, M.S., & Shanmugapriya, M. (2016). Bio ethanol and citric acid production from banana peel and pineapple peel by fermentation process. International Journal of Engineering Research & Technology, 1–3.
Rajak, R. C., & Banerjee, R. (2016). Enzyme mediated biomass pretreatment and hydrolysis: A biotechnological venture towards bioethanol production. RSC Advances, 6(66), 61301–61311. https://doi.org/10.1039/C6RA09541K
Ratnam, B. V. V., Subba Rao, S., Mendu, D. R., Narasimha Rao, M., & Ayyanna, C. (2005). Optimization of medium constituents and fermentation conditions for the production of ethanol from palmyra jaggery using response surface methodology. World Journal of Microbiology and Biotechnology, 21, 399–404. https://doi.org/10.1007/s11274 004 2461 4
Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025
Rivera, E. C., Rabelo, S. C., dos Reis Garcia, D., Filho, R. M., & da Costa, A. C. (2010). Enzymatic hydrolysis of sugarcane bagasse for bioethanol production: Determining optimal enzyme loading using neural networks. Journal of Chemical Technology & Biotechnology, 85(7), 983–992. https://doi.org/10.1002/jctb.2391
Rozenfelde, L., Puķe, M., Kruma, I., Poppele, I., Matjuskova, N., Vederņikovs, N., & Rapoport, A. (2017, July). Enzymatic hydrolysis of lignocellulose for bioethanol production. In Proceedings of the Latvian Academy of Sciences (Vol. 71, No. 4, p. 275).
DOI:10.1515/prolas-2017-0046
Sharma, N., Kalra, K. L., Oberoi, H. S., & Bansal, S. (2007). Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian Journal of Microbiology, 47, 310–6. https://doi.org/10.1007/s12088 007 0057 z
Silva, S., Arachchige, U., & Nilmini, R. (2022). Comparative study of bioethanol production from waste banana fruits and grape fruits. Asian Journal of Chemistry, 34(9), 2253–2256. https://doi.org/10.14233/ajchem.2022.23770
Singh, A. K., Rath, S., Kumar, Y., Masih, H., Peter, J. E., Benjamin, J., Singh, P., Dipuraj, & Singh, P. (2015). Bio-Ethanol Production from Banana peel by Simultaneous Saccharification and Fermentation Process using cocultures Aspergillus niger and Saccharomyces cerevisiae. International Journal of Current Microbiology and Applied Sciences, 3(5), 84–96.
Soltani, S. (2019). Modified exergy and exergoeconomic analyses of a biomass post fired hydrogen production combined cycle. Renewable Energy, 135,1466–1480.
https://doi.org/10.1016/j.renene.2018.09.074
Spiehs, M. J., Whitney, M. H., & Shurson, G. C. (2002). Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. Journal of Animal Science, 80(10), 2639–2645.
DOI: 10.2527/2002.80102639x
Stessl, B., Szakmary Brandle, K., Vorberg, U., Schoder, D., & Wagner, M. (2020). Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant. International Journal of Food Microbiology, 314, Article 108360. https://doi.org/10.1016/j.ijfoodmicro.2019.108360
Sukhang, S., Choojit, S., Reungpeerakul, T., & Sangwichien, C. (2020). Bioethanol production from oil palm empty fruit bunch with SSF and SHF processes using Kluyveromyces marxianus yeast. Cellulose, 27, 301–314. https://doi.org/10.1007/s10570 019 02778 2
Taherzadeh, M. J., & Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. Bioresources, 2(3), 472-499.
Tahir, B., & Mezori, H. A. (2022). Bioethanol production from Quercus aegilops using Pichia stipitis and Kluyveromyces marxianus. Biomass Conversion and Biorefinery, 12, 3631–3640.
https://doi.org/10.1007/s13399-020-00704-2
Tejirian, A., & Xu, F. (2011). Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme and Microbial Technology, 48(3), 239–247. https://doi.org/10.1016/j.enzmictec.2010.11.004
Tenkolu, G. A., Kuffi, K. D., & Gindaba, G. T. (2024). Optimization of fermentation condition in bioethanol production from waste potato and product characterization. Biomass Conversion and Biorefinery, 14(4), 5205–5223. https://doi.org/10.1007/s13399-022-02974-4
Tiwari, G. A. R. I. M. A., Sharma, A. B. H. I. S. H. E. K., Dalela, M., Gupta, R., Sharma, S. A. T. Y. A. W. A. T. I., & Kuhad, R. C. (2017). Microwave assisted alkali pretreatment of fruit peel wastes for enzymatic hydrolysis. Indian Journal of Agricultural Sciences, 87(4), 496–499.
DOI:10.56093/ijas.v87i4.69413
Uy, Salihu & Ay, Abubakar & Mansir, Gali & Garba Usman, Usman. (2022). Effect of pH and Temperature on Bioethanol Production: Evidences from the Fermentation of Sugarcane Molasses using Saccharomyces cerevisiae. 8. 9-16.
Vanmarcke, G., Demeke, M. M., Foulquie Moreno, M. R., & Thevelein, J. M. (2021). Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates. Biotechnology for Biofuels, 14, Article 92. https://doi.org/10.1186/s13068 021 01935 9
Vernon Carter, E. J., Alvarez Ramirez, J., Meraz, M., & Garcia Diaz, S. (2019). Gaining insights into α amylase inhibition by glucose through mathematical modeling and analysis of the hydrolysis kinetics of gelatinized corn starch dispersions. International Journal of Biological Macromolecules, 132, 766–771. https://doi.org/10.1016/j.ijbiomac.2019.03.226
Wang, F., Jiang, Y., Guo, W., Niu, K., Zhang, R., Hou, S., & Fang, X. (2016). An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnology for Biofuels, 9, Article 50. https://doi.org/10.1186/s13068 016 0464 7
Weiss, N. D., Felby, C., & Thygesen, L. G. (2019). Enzymatic hydrolysis is limited by biomass–water interactions at high solids: Improved performance through substrate modifications. Biotechnology for Biofuels, 12, Article 3.
https://doi.org/10.1186/s13068-018-1339-x
Weldehans, Mebrahtom Gebresemati & Halefom, Alula. (2015). Optimization of Banana Peels Hydrolysis for the Production of Bioethanol: Response Surface Methodology. International Letters of Natural Sciences. 48. 53-60. 10.56431/p-f6oa7x.
Wi, S. G., Cho, E. J., Lee, D. S., Lee, S. J., Lee, Y. J., & Bae, H. J. (2015). Lignocellulose conversion for biofuel: A new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnology for Biofuels, 8, Article 228. https://doi.org/10.1186/s13068-015-0419-4
Wi, S. G., Choi, I. S., Kim, K. H., Kim, H. M., & Bae, H. J. (2013). Bioethanol production from rice straw by popping pretreatment. Biotechnology for Biofuels, 6, Article 166.
https://doi.org/10.1186/1754-6834-6-166
Widyaratne, G. P., & Zijlstra, R. T. (2007). Nutritional value of wheat and corn distiller’s dried grain with solubles: Digestibility and digestible contents of energy, amino acids and phosphorus, nutrient excretion and growth performance of grower-finisher pigs. Canadian Journal of Animal Science, 87, 103–114.
Xu, D., Lin, G., Guo, S., Wang, S., Guo, Y., & Jing, Z. (2018). Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review. Renewable and Sustainable Energy Reviews, 97, 103-118. https://doi.org/10.1016/j.rser.2018.08.028
Xu, Q. S., Yan, Y. S., & Feng, J. X. (2016). Efficient hydrolysis of raw starch and ethanol fermentation: A novel raw starch digesting glucoamylase from Penicillium oxalicum. Biotechnology for Biofuels, 9, Article 216. https://doi.org/10.1186/s13068-016-0636-5
Xu, Y., Zhi, Y., Wu, Q., Du, R., & Xu, Y. (2017). Zygosaccharomyces bailii is a potential producer of various flavor compounds in Chinese Maotai flavor liquor fermentation. Frontiers in Microbiology, 8, Article 2609. https://doi.org/10.3389/fmicb.2017.02609
Ye, W., Zhang, W., Liu, T., Tan, G., Li, H., & Huang, Z. (2016). Improvement of ethanol production in Saccharomyces cerevisiae by high efficient disruption of the ADH2 gene using a novel recombinant TALEN vector. Frontiers in Microbiology, 7, Article 1067. https://doi.org/10.3389/fmicb.2016.01067
Yousif, Y. M., & Abdulhay, H.S. (2017). Bioethanol production from banana peels using different pretreatments. Asian Journal of Biological and Life Sciences, 6(3), 1–8.
Zacchi, G., & Axelsson, A. (1989). Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnology and Bioengineering, 34(2), 223-233. https://doi.org/10.1002/bit.260340211
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.