Liposomal Delivery of mRNA-Based Therapeutics for Personalized Cancer Immunotherapy: Design and Preclinical Insights
Keywords:
N\AAbstract
The use of messenger RNA (mRNA) medication in cancer has transformed cancer immunotherapy by letting researchers directly add tumor-related proteins and immune system boosters into the treatment. Still, naked mRNA has problems with instability and not being taken well by cells, so advanced methods of delivery are required. Researchers and manufacturers have made liposomal formulations the standard for mRNA, as these protect it from degradation, help it be taken up by cells and ensure controlled reactions. The goal of this review is to study the design concepts behind liposomal mRNA drugs for cancer immunotherapies and look at their formulation, how they operate and results from preclinical experiments. We examine significant measurements that impact how effective therapy is such as the makeup of lipids, particle size determination, targeting approaches and how much immune activation occurs. It has been shown in recent studies on animals that perfected liposomal mRNA vaccines can produce effective immunity against cancer by improving the transfection of dendritic cells, lasting antigen display and arousing both CD8+ and CD4+ T cell responses. Combining the detection of personalized neoantigens with liposomal delivery recently introduced a new cancer therapy which could minimize risk and be more effective overall for patients than the traditional treatments.
Downloads
Metrics
References
Sahin, U., Karikó, K., & Türeci, Ö. (2014). mRNA-based therapeutics — developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759-780.
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261-279.
Cullis, P. R., & Hope, M. J. (2017). Lipid nanoparticle systems for enabling gene therapies. Molecular Therapy, 25(7), 1467-1475.
Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 6(12), 1078-1094.
Verbeke, R., Lentacker, I., De Smedt, S. C., &Dewitte, H. (2019). Three decades of messenger RNA vaccine development. Nano Today, 28, 100766.
Karikó, K., Buckstein, M., Ni, H., & Weissman, D. (2005). Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 23(2), 165-175.
Alameh, M. G., Weissman, D., & Pardi, N. (2021). Informing mRNA vaccine design through innate immune signaling. Trends in Immunology, 42(1), 1-11.
Whitehead, K. A., Dorkin, J. R., Vegas, A. J., Chang, P. H., Veiseh, O., Matthews, J., ... & Anderson, D. G. (2014). Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nature Communications, 5(1), 4277.
Jayaraman, M., Ansell, S. M., Mui, B. L., Tam, Y. K., Chen, J., Du, X., ... & Cullis, P. R. (2012). Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. AngewandteChemie International Edition, 51(34), 8529-8533.
Akinc, A., Maier, M. A., Manoharan, M., Fitzgerald, K., Jayaraman, M., Barros, S., ... & Rajeev, K. G. (2019). The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature Nanotechnology, 14(12), 1084-1087.
Reichmuth, A. M., Oberli, M. A., Jaklenec, A., Langer, R., &Blankschtein, D. (2016). mRNA vaccine delivery using lipid nanoparticles. Therapeutic Delivery, 7(5), 319-334.
Schoenmaker, L., Witzigmann, D., Kulkarni, J. A., Verbeke, R., Kersten, G., Jiskoot, W., & Crommelin, D. J. (2021). mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics, 601, 120586.
Hassett, K. J., Benenato, K. E., Jacquinet, E., Lee, A., Woods, A., Yuzhakov, O., ... & Ciaramella, G. (2019). Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Molecular Therapy-Nucleic Acids, 15, 1-11.
Oberli, M. A., Reichmuth, A. M., Dorkin, J. R., Mitchell, M. J., Fenton, O. S., Jaklenec, A., ... & Langer, R. (2017). Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Letters, 17(3), 1326-1335.
Kranz, L. M., Diken, M., Haas, H., Kreiter, S., Loquai, C., Reuter, K. C., ... & Sahin, U. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 534(7607), 396-401.
Phua, K. K., Leong, K. W., & Nair, S. K. (2013). Transfection efficiency and transgene expression kinetics of mRNA delivered in lipid nanoparticles. Molecular Pharmaceutics, 10(1), 143-155.
Chahal, J. S., Khan, O. F., Cooper, C. L., McPartlan, J. S., Tsosie, J. K., Tilley, L. D., ... & Anderson, D. G. (2016). Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proceedings of the National Academy of Sciences, 113(29), E4133-E4142.
Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., ... & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 217, 345-351.
Schubert, N., Dudek, S., Liu, L., Oberländer, J., Ostermann, P. N., Türeci, Ö., & Sahin, U. (2021). Abstract 2937: Systemic RNA-LPX immunotherapy provides durable anti-tumor immunity in multiple syngeneic tumor models. Cancer Research, 81(13 Supplement), 2937-2937.
Rojas, L. A., Sethna, Z., Soares, K. C., Olcese, C., Pang, N., Patterson, E., ... &Wolchok, J. D. (2023). Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature, 618(7963), 144-150.
Ott, P. A., Hu, Z., Keskin, D. B., Shukla, S. A., Sun, J., Bozym, D. J., ... & Wu, C. J. (2017). An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 547(7662), 217-221.
Sahin, U., Derhovanessian, E., Miller, M., Kloke, B. P., Simon, P., Löwer, M., ... & Türeci, Ö. (2017). Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 547(7662), 222-226.
Weber, J. S., Carlino, M. S., Khattak, A., Meniawy, T., Ansstas, G., Taylor, M. H., ... & Krishnamurthy, A. (2021). Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. The Lancet, 398(10313), 1970-1980.
Esprit, A., de Mey, W., Bahadur, K. C., Sornasse, T., Diken, M., & Castle, J. C. (2020). An essential role for Rag GTPases in optimizing T cell responses and cross-presentation in dendritic cells. Frontiers in Immunology, 11, 2040.
Cafri, G., Gartner, J. J., Zaks, T., Hopson, K., Levin, N., Paria, B. C., ... & Rosenberg, S. A. (2020). mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. Journal of Clinical Investigation, 130(11), 5976-5988.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.