Staphylococcus aureus and Antibiotic Resistance: Pathogenic Adaptations and the Role of Neutrophils in Host Défense
Keywords:
Antibiotic Resistance, Multi drug resistance, Morbidity and Mortality, MRSA, VRSA, Stewardship, penicillin resistanceAbstract
Clinical implications include limitations in current antibiotic therapies, increased morbidity and mortality, and the need for novel therapeutics. Current and future approaches to managing antibiotic resistance include antibiotic stewardship programs, surveillance and monitoring, research and development, and innovative therapeutic approaches. Future directions include understanding resistance evolution in community settings, optimizing treatment strategies, and developing new antimicrobial agents. Aim of this review study to provide a comprehensive overview of the historical development of antibiotic resistance in Staphylococcus aureus, from the emergence of penicillin resistance to the rise of multidrug-resistant strains such as MRSA, VISA, and VRSA. Clinical ramifications include higher morbidity and mortality, restrictions on the use of existing antibiotic medicines, and the requirement for novel medications. Innovative therapeutic approaches, research and development, surveillance and monitoring, and antibiotic stewardship programs are some of the current and future strategies for managing antibiotic resistance. Prospective avenues of inquiry encompass comprehending the progression of resistance within community environments, refining therapeutic approaches, and creating novel antimicrobial substances. The purpose of this review study is to present a thorough overview of the evolution of antibiotic resistance in Staphylococcus aureus across time, starting with the advent of penicillin resistance and continuing through the emergence of multidrug-resistant strains like MRSA, VISA, and VRSA.
Downloads
References
2019 Antibiotic Resistance Threats Report. (2024, July 16). Antimicrobial Resistance. https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html#:~:text
Ansari, N., Singh, G., Singh, R., & Sheetal. (2025). Innovative herbal tea formulation using Holarrhena antidysenterica, Emblica officinalis, and Stevia: Nutritional and phytochemical analysis. Journal of Neonatal Surgery, 14(6), 381-389.
Bala, S., Singh, G., & Kaur, M. (2024). Mindfulness of functional foods in cancer prevention and health promotion: A comprehensive review. Revista Electronica De Veterinaria, 25(1), 1181-1187.
Bala, S., Singh, G., Arora, R., & Devanshika. (2024). Impact of caffeine consumption on stress management and stamina among university students. Revista Electronica De Veterinaria, 25(2), 253-259.
Anuj, S. A., Gajera, H. P., Hirpara, D. G., & Golakiya, B. A. (2018). Interruption in membrane permeability of drug-resistant Staphylococcus aureus with cationic particles of nano silver. European Journal of Pharmaceutical Sciences, 127, 208–216. https://doi.org/10.1016/j.ejps.2018.11.005
Bayer, A. S., Schneider, T., & Sahl, H. (2012). Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Annals of the New York Academy of Sciences, 1277(1), 139–158. https://doi.org/10.1111/j.1749-6632.2012.06819.x
Bharti, J., & Mathur, A. (2017). Study of Production of Green Conjugates of Silver Nanoparticles for Determination of Antimicrobial Potential against Biofilm Producing Staphylococcus aureus. International Journal of Current Microbiology and Applied Sciences, 6(8), 2280–2286. https://doi.org/10.20546/ijcmas.2017.608.267
Chen, A. Y., Adamek, R. N., Dick, B. L., Credille, C. V., Morrison, C. N., & Cohen, S. M. (2018). Targeting Metalloenzymes for Therapeutic Intervention. Chemical Reviews, 119(2), 1323–1455. https://doi.org/10.1021/acs.chemrev.8b00201
Cong, Y., Yang, S., & Rao, X. (2019). Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. Journal of Advanced Research, 21, 169–176. https://doi.org/10.1016/j.jare.2019.10.005
Edlin, R. S., Shapiro, D. J., Hersh, A. L., & Copp, H. L. (2013). Antibiotic Resistance Patterns of Outpatient Pediatric Urinary Tract Infections. The Journal of Urology, 190(1), 222–227. https://doi.org/10.1016/j.juro.2013.01.069
ElSayed, N., Ashour, M., & Amine, A. E. K. (2018). Vancomycin resistance among Staphylococcus aureus isolates in a rural setting, Egypt. GERMS, 8(3), 134–139. https://doi.org/10.18683/germs.2018.1140
Figure 3: Evaluation of antibiotic resistance in Staphylococcus aureus. . .. (n.d.). ResearchGate. https://r.search.yahoo.com/_ylt=Awr1QfJZsPNmhrMBjA3GHAx.;_ylu=c2VjA2ZwLWF0dHJpYgRzbGsDcnVybA--/RV=2/RE=1727275225/RO=11/RU=https%3a%2f%2fwww.researchgate.net%2ffigure%2fEvaluation-of-antibiotic-resistance-in-Staphylococcus-aureus-L-103_fig2_266488803/RK=2/RS=5SHlF6h6VTrS94aQ4kAKgYJyJnE-
Figure 6. Timeline of development of antibiotic resistance in S. aureus. (n.d.). ResearchGate. https://r.search.yahoo.com/_ylt=AwrKGkTkr_Nm40sLIxHGHAx.;_ylu=c2VjA2ZwLWF0dHJpYgRzbGsDcnVybA--/RV=2/RE=1727275108/RO=11/RU=https%3a%2f%2fwww.researchgate.net%2ffigure%2fTimeline-of-development-of-antibiotic-resistance-in-S-aureus_fig3_367278925/RK=2/RS=OS8zbilUq4VeUnJp05r3j0ycKJU-
Fisher, R. A., Gollan, B., & Helaine, S. (2017). Persistent bacterial infections and persister cells. Nature Reviews Microbiology, 15(8), 453–464. https://doi.org/10.1038/nrmicro.2017.42
Forbes, B. A., Hall, G. S., Miller, M. B., Novak, S. M., Rowlinson, M., Salfinger, M., Somoskövi, A., Warshauer, D. M., & Wilson, M. L. (2018). Practical Guidance for Clinical Microbiology Laboratories: Mycobacteria. Clinical Microbiology Reviews, 31(2). https://doi.org/10.1128/cmr.00038-17
Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00107
Gurung, R. R., Maharjan, P., & Chhetri, G. G. (2020). Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future Science OA, FSO464. https://doi.org/10.2144/fsoa-2019-0122
Harada, Y., Chong, Y., Shimono, N., Miyake, N., Uchida, Y., Kadowaki, M., Akashi, K., & Shimoda, S. (2014). Nosocomial spread of meticillin-resistant Staphylococcus aureus with β-lactam-inducible arbekacin resistance. Journal of Medical Microbiology, 63(5), 710–714. https://doi.org/10.1099/jmm.0.065276-0
Hashizume, H., Takahashi, Y., Masuda, T., Ohba, S., Ohishi, T., Kawada, M., & Igarashi, M. (2017). In vivo efficacy of β-lactam/tripropeptin C in a mouse septicemia model and the mechanism of reverse β-lactam resistance in methicillin-resistant Staphylococcus aureus mediated by tripropeptin C. The Journal of Antibiotics, 71(1), 79–85. https://doi.org/10.1038/ja.2017.88
Hiramatsu, K., Aritaka, N., Hanaki, H., Kawasaki, S., Hosoda, Y., Hori, S., Fukuchi, Y., & Kobayashi, I. (1997). Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. The Lancet, 350(9092), 1670–1673. https://doi.org/10.1016/s0140-6736(97)07324-8
Hollenbeck, B. L., & Rice, L. B. (2012). Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 3(5), 421–569. https://doi.org/10.4161/viru.21282
Jenn. (2012, May 27). PPT - Lecture 3 MRSA Methicillin resistant S. aureus PowerPoint Presentation - ID:437653. SlideServe. https://r.search.yahoo.com/_ylt=Awr1SbhSx_9meMAVymrGHAx.;_ylu=c2VjA2ZwLWF0dHJpYgRzbGsDcnVybA--/RV=2/RE=1728067538/RO=11/RU=https%3a%2f%2fwww.slideserve.com%2fjenn%2flecture-3-mrsa-methicillin-resistant-s-aureus/RK=2/RS=gH8rQ0FDHPF_R5MeGoW64r7egTM-
Jones, T., Yeaman, M. R., Sakoulas, G., Yang, S., Proctor, R. A., Sahl, H., Schrenzel, J., Xiong, Y. Q., & Bayer, A. S. (2008). Failures in Clinical Treatment of Staphylococcus aureus Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding. Antimicrobial Agents and Chemotherapy, 52(1), 269–278. https://doi.org/10.1128/aac.00719-07
Jørgensen, H. J., Mørk, T., Caugant, D. A., Kearns, A., & Rørvik, L. M. (2005). Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk. Applied and Environmental Microbiology, 71(12), 8352–8361. https://doi.org/10.1128/aem.71.12.8352-8361.2005
Kanwar, I., Sah, A. K., & Suresh, P. K. (2017a). Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies. Current Pharmaceutical Design, 23(14). https://doi.org/10.2174/1381612822666161124154549
Kanwar, I., Sah, A. K., & Suresh, P. K. (2017b). Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies. Current Pharmaceutical Design, 23(14). https://doi.org/10.2174/1381612822666161124154549
Keane, O. (2019). Symposium review: Intramammary infections—Major pathogens and strain-associated complexity. Journal of Dairy Science, 102(5), 4713–4726. https://doi.org/10.3168/jds.2018-15326
Kirby, W. M. M. (1944). Extraction of a Highly Potent Penicillin Inactivator from Penicillin Resistant Staphylococci. Science, 99(2579), 452–453. https://doi.org/10.1126/science.99.2579.452
Krishnamurthy, V., Saha, A., Renushri, B. V., & Nagaraj, E. R. (2014). Methicillin Resistant Staphylococcus aureus Carriage, Antibiotic Resistance and Molecular Pathogenicity among Healthy Individuals Exposed and Not Exposed to Hospital Environment. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/jcdr/2014/8409.4638
Kruse, T., Levisson, M., De Vos, W. M., & Smidt, H. (2014). vanI: a novel d‐Ala‐d‐Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense. Microbial Biotechnology, 7(5), 456–466. https://doi.org/10.1111/1751-7915.12139
Lawrence, R., & Jeyakumar, E. (2013). Antimicrobial Resistance: A Cause for Global Concern. BMC Proceedings, 7(S3). https://doi.org/10.1186/1753-6561-7-s3-s1
Lazaris, A., Coleman, D. C., Kearns, A. M., Pichon, B., Kinnevey, P. M., Earls, M. R., Boyle, B., O’Connell, B., Brennan, G. I., & Shore, A. C. (2017). Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. Journal of Antimicrobial Chemotherapy, 72(12), 3252–3257. https://doi.org/10.1093/jac/dkx292
Lee, B., Singh, A., David, M., Bartsch, S., Slayton, R., Huang, S., Zimmer, S., Potter, M., Macal, C., Lauderdale, D., Miller, L., & Daum, R. (2013). The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Clinical Microbiology and Infection, 19(6), 528–536. https://doi.org/10.1111/j.1469-0691.2012.03914.x
Lee, Y., & Park, J. (2016). Phage Conversion for ��-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods. Journal of Microbiology and Biotechnology, 26(2), 263–269. https://doi.org/10.4014/jmb.1508.08042
Lekshmi, M., Ammini, P., Adjei, J., Sanford, L. M., Shrestha, U., Kumar, S., & Varela, M. F. (2018). Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus AIMS Microbiology, 4(1), 1–18. https://doi.org/10.3934/microbiol.2018.1.1
Michiels, J. E., Van Den Bergh, B., Verstraeten, N., & Michiels, J. (2016). Molecular mechanisms and clinical implications of bacterial persistence. Drug Resistance Updates, 29, 76–89. https://doi.org/10.1016/j.drup.2016.10.002
Morales-Ubaldo, A. L., Rivero-Perez, N., Valladares-Carranza, B., Velázquez-Ordoñez, V., Delgadillo-Ruiz, L., & Zaragoza-Bastida, A. (2023). Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Veterinary and Animal Science, 21, 100306. https://doi.org/10.1016/j.vas.2023.100306
Paniker, C. K. J. (2017). Paniker’s Textbook of Medical Parasitology. JP Medical Ltd. Patel, S., Preuss, C. V., & Bernice, F. (2023, March 24). Vancomycin. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK459263/
Pruett, T. (2010). Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Yearbook of Surgery, 2010, 141–142. https://doi.org/10.1016/s0090-3671(10)79814-1
Romandini, A., Pani, A., Schenardi, P. A., Pattarino, G. a. C., De Giacomo, C., & Scaglione, F. (2021). Antibiotic Resistance in Pediatric Infections: Global Emerging Threats, Predicting the Near Future. Antibiotics, 10(4), 393. https://doi.org/10.3390/antibiotics10040393
Rungelrath, V., & DeLeo, F. R. (2020). Staphylococcus aureus, Antibiotic Resistance, and the Interaction with Human Neutrophils. Antioxidants and Redox Signaling, 34(6), 452–470. https://doi.org/10.1089/ars.2020.8127
Sabat, A. J., Tinelli, M., Grundmann, H., Akkerboom, V., Monaco, M., Del Grosso, M., Errico, G., Pantosti, A., & Friedrich, A. W. (2018a). Daptomycin Resistant Staphylococcus aureus Clinical Strain With Novel Non-synonymous Mutations in the mprF and vraS Genes: A New Insight Into Daptomycin Resistance. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02705
Sabat, A. J., Tinelli, M., Grundmann, H., Akkerboom, V., Monaco, M., Del Grosso, M., Errico, G., Pantosti, A., & Friedrich, A. W. (2018b). Daptomycin Resistant Staphylococcus aureus Clinical Strain With Novel Non-synonymous Mutations in the mprF and vraS Genes: A New Insight Into Daptomycin Resistance. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02705
Smith, T. C., Male, M. J., Harper, A. L., Kroeger, J. S., Tinkler, G. P., Moritz, E. D., Capuano, A. W., Herwaldt, L. A., & Diekema, D. J. (2009). Methicillin-Resistant Staphylococcus aureus (MRSA) Strain ST398 Is Present in Midwestern U.S. Swine and Swine Workers. PLoS ONE, 4(1), e4258. https://doi.org/10.1371/journal.pone.0004258
Staphylococcus aureus resistant to vancomycin--United States, 2002. (2002, July 5). PubMed. https://pubmed.ncbi.nlm.nih.gov/12139181/
Singh, G., Soni, G., Ali, S. R., Sonune, S. J., Sanuj, A. K., Sharma, M., Ansari, M. S., & Kumar, A. (2022). Analyze the effects of prebiotics on the immunity of human beings through various clinical studies. Jundishapur Journal of Microbiology, 15(1), 1167-1177.
Singh, G., Bala, S., Rastogi, M., Noviar, R., Naveel, T., Ramanathan, T., & Kumar, S. A. (2022). Comprehensive look of renal calculi in kidneys: A review. NeuroQuantology, 20(5), 4404-4412.
Singh, G., Bala, S., Katoch, S., Kaur, L., Kumar, A., Kumar, A., Bharadwaj, A., & Kurniullah, A. Z. (2022). Liver cirrhosis: The struggling liver. International Journal of Health Sciences, 6(1), 5547-5559.
Tornimbene, B., Eremin, S., Escher, M., Griskeviciene, J., Manglani, S., & Pessoa-Silva, C. L. (2018). WHO Global Antimicrobial Resistance Surveillance System early implementation 2016–17. The Lancet Infectious Diseases, 18(3), 241–242. https://doi.org/10.1016/s1473-3099(18)30060-4
Uttley, A., Collins, C., Naidoo, J., & George, R. (1988). VANCOMYCIN-RESISTANT ENTEROCOCCI. The Lancet, 331(8575–8576), 57–58. https://doi.org/10.1016/s0140-6736(88)91037-9
Vestergaard, M., Frees, D., & Ingmer, H. (2019). Antibiotic Resistance and the MRSA Problem. Microbiology Spectrum, 7(2). https://doi.org/10.1128/microbiolspec.gpp3-0057-2018
Werner, G., Strommenger, B., & Witte, W. (2008a). Acquired Vancomycin Resistance in Clinically Relevant Pathogens. Future Microbiology, 3(5), 547–562. https://doi.org/10.2217/17460913.3.5.547
Werner, G., Strommenger, B., & Witte, W. (2008b). Acquired Vancomycin Resistance in Clinically Relevant Pathogens. Future Microbiology, 3(5), 547–562. https://doi.org/10.2217/17460913.3.5.547
World Health Organization: WHO. (2023, November 21). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:tex
Wyllie, D. H., Walker, A. S., Miller, R., Moore, C., Williamson, S. R., Schlackow, I., Finney, J. M., O’Connor, L., Peto, T. E. A., & Crook, D. W. (2011). Decline of meticillin-resistantStaphylococcus aureusin Oxfordshire hospitals is strain-specific and preceded infection-control intensification. BMJ Open, 1(1), e000160. https://doi.org/10.1136/bmjopen-2011-000160
Yang, J., Cheng, A., Tai, H., Chang, L., Hsu, M., & Sheng, W. (2019). Selected Mutations by Nemonoxacin and Fluoroquinolone Exposure Among Relevant Gram-Positive Bacterial Strains in Taiwan. Microbial Drug Resistance, 26(2), 110–117. https://doi.org/10.1089/mdr.2019.0048.
Naess, A., Nilssen, S. S., Mo, R., Eide, G. E., & Sjursen, H. (2016). Role of neutrophil to lymphocyte and monocyte to lymphocyte ratios in the diagnosis of bacterial infection in patients with fever. Infection, 45(3), 299–307. https://doi.org/10.1007/s15010-016-0972-1.
Tomlinson, K. L., Riquelme, S. A., Baskota, S. U., Drikic, M., Monk, I. R., Stinear, T. P., Lewis, I. A., & Prince, A. S. (2023). Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Reports, 42(2), 112064. https://doi.org/10.1016/j.celrep.2023.112064.
Lang, R., & Siddique, M. N. a. A. (2024). Control of immune cell signaling by the immuno-metabolite itaconate. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1352165.
Laupland, K. B., Ross, T., & Gregson, D. B. (2008). Staphylococcus aureusBloodstream infections: Risk factors, Outcomes, and the Influence of methicillin resistance in Calgary, Canada, 2000–2006. The Journal of Infectious Diseases, 198(3), 336–343. https://doi.org/10.1086/589717
Rigby, K. M., & DeLeo, F. R. (2011b). Neutrophils in innate host defense against Staphylococcus aureus infections. Seminars in Immunopathology, 34(2), 237–259. https://doi.org/10.1007/s00281-011-0295-3
Visht, S., & Singh, G. (2023). Beneficial aspects of nutraceuticals in the management of osteoporosis. In Nutraceuticals in Osteoporosis. CRC Press.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.