Design and Optimization of Wireless Sensors for Smart Grid Applications in Energy Management
Keywords:
APH, Maternal outcomes, Fetal outcomesAbstract
This paper presents a comprehensive approach to smart energy management using IoT-based smart meters. The system provides real-time monitoring, predictive maintenance, and blockchain-secured communication for improved energy ef- ficiency. Results show substantial reductions in energy consump- tion and enhanced grid reliability. We analyze various wireless protocols,proposeanoptimizedsensornetwork,andvalidatethe approach with real-world case studies and simulations.
Downloads
References
J.Munozetal.,”DesignandValidationofanIoT-EnabledSmartMeter,”JournalofSmartEnergySystems,vol.12,no.3,pp.45–60,2022.
G.Dileep,”ASurveyonSmartGridTechnologiesandApplications,”RenewableEnergy,vol.156,pp.1233–1246,2020.
F. Yanine et al., ”Grid-Tied Distributed Generation Systems for Sustain-able Energy Management,” Energies, vol. 13, no. 8, p. 2020, 2020.
V. C. Gungor et al., ”A Survey on Wireless Sensor Networks for SmartGrid Applications,” IEEE Communications Surveys & Tutorials, vol. 15,no. 1, pp. 21–38, 2013.
R.Khanetal.,”LoRaWAN-BasedEnergyMonitoringSystemsforSmartGrids,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7971–7983,2019.
S. Li et al., ”Deep Learning for Load Forecasting in Smart Grids: AComparative Study,” IEEE Transactions on Industrial Informatics, vol.16, no. 9, pp. 5849–5860, 2020.
H.Zhangetal.,”LSTM-BasedPredictiveMaintenanceforFaultDetectioninSmartGrids,”IEEETransactionsonPowerSystems,vol.35,no.4, pp.2701–2712,2020.
E. Mengelkamp et al., ”Blockchain for Decentralized Energy Trading inSmart Grids,” Applied Energy, vol. 229, pp. 1235–1245, 2018.
A. Al-Fuqaha et al., ”Internet of Things: A Survey on Enabling Tech-nologies and Applications,” IEEE Communications Surveys & Tutorials,vol. 17, no. 4, pp. 2347–2376, 2015.
M. Kuzlu et al., ”Communication Requirements and Challenges in theSmart Grid,” IEEE Power and Energy Technology Systems Journal, vol.6, no. 2, pp. 71–81, 2019.
S.M.Aminetal.,”SmartGridSecurity,Privacy,andResilience,”IEEEPower and Energy Magazine, vol. 17, no. 3, pp. 33–45, 2019.
T. Qiuet al., ”Edge Computing for Real-Time Energy Management inIoT-Based Smart Grids,” IEEE Transactions on Industrial Informatics,vol. 18, no. 1, pp. 488–498, 2022.
Y. Wang et al., ”Demand Response in Smart Grids: A Review ofApplications and Optimization Methods,” IEEE Transactions on SmartGrid, vol. 10, no. 2, pp. 1385–1396, 2019.
K.Metsetal.,”OptimizingSmartEnergySystemswithWirelessSensorNetworks,” IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp.1249–1258, 2020.
L.Atzorietal.,”TheInternetofThings:ASurvey,”ComputerNetworks,vol. 54, no. 15, pp. 2787–2805, 2010.
N. Lu et al., ”Wireless Sensor Networks for Smart Grid: ResearchChallengesandOpportunities,”IEEESensorsJournal,vol.15,no.3, pp.1901–1914,2015.
Z. Fan et al., ”Smart Grid Communications: Overview of Technologiesand Challenges,” IEEE Communications Magazine, vol. 51, no. 1, pp.90–97, 2013.
J. Gao et al., ”Energy-Efficient Wireless Sensor Networks for SmartGridApplications,”IEEETransactionsonIndustrialElectronics,vol.63,no. 6, pp. 3837–3846, 2016.
H. Farhangi, ”The Path of the Smart Grid,” IEEE Power and EnergyMagazine, vol. 8, no. 1, pp. 18–28, 2010.
M. Erol-Kantarci et al., ”Wireless Sensor Networks for Cost-EfficientResidentialEnergyManagement,”IEEETransactionsonSmartGrid,vol.2, no. 2, pp. 314–325, 2011.
Q. Yang et al., ”Edge AI for Real-Time Anomaly Detection in SmartGrids,” IEEE Trans. Industrial Informatics, vol. 19, no. 2, pp. 987-996,2023.
L. T. Nguyen et al., ”5G-NR Communication for Low-Latency SmartGrid Applications,” IEEE Communications Magazine, vol. 60, no. 3, pp.78-84, 2022.
R. V. Yohanandhan et al., ”Quantum Computing in Smart Grid Opti-mization: A Survey,” IEEE Access, vol. 10, pp. 12345-12367, 2022.
S. Mishra et al., ”Resilient Microgrid Design Using Hybrid WirelessSensor Networks,” IEEE Trans. Sustainable Energy, vol. 14, no. 1, pp.112-125, 2023.
M.A.Hussainetal.,”GPT-4AssistedLoadForecastinginSmartGrids,” NatureEnergy,vol.8,pp.456-465,2023.
E. Hossain et al., ”Blockchain-Enabled Peer-to-Peer Energy Trading: AComprehensiveReview,”Renewable&SustainableEnergyReviews,vol.176, 113123, 2023.
K. Wang et al., ”Digital Twin for Predictive Maintenance in PowerTransformers,” IEEE Trans. Power Delivery, vol. 38, no. 2, pp. 901-912,2023.
A.K. Tripathi et al., ”6G-Enabled Smart Grids: Vision and Challenges,” IEEENetwork,vol.37,no.2,pp.128-134,2023.
L. Zhou et al., ”Human-Centric AI for Energy Management in SmartCities,” IEEE IoT Journal, vol. 10, no. 8, pp. 6897-6910, 2023.
G. Li et al., ”Sustainable Energy Storage Integration in Smart Grids: ACyber-Physical Approach,” IEEE Trans. Smart Grid, vol. 14, no. 3, pp.1892-1905, 2023.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.