Smart Agriculture: Iot-Based Yield Prediction Through Real-Time Soil Analysis and Machine Learning Models

Authors

  • Anand Digambarrao Kadam
  • Nagsen Samadhan Bansod

DOI:

https://doi.org/10.63682/jns.v14i4S.6892

Keywords:

Smart agriculture, Internet of Things (IoT), machine learning, crop yield prediction, real-time soil analysis, precision farming, soil nutrients, climate variables, data analytics in agriculture, sustainable agriculture

Abstract

The inputs of the Internet of Things (IoT) and machine learning (ML) are greatly changing the agricultural sector, forming the core of smart farming. The research examines how sensors connected through the Internet of Things and data predicting methods can improve crop yields in various parts of Maharashtra. A dataset comprising 500 data points, reporting soil factors (pH, EC, OC, N, P, K), weather variables (temperature, humidity, rainfall) and production data was studied using Python for statistics and graphical displays. Key patterns and interactions between variables were found using descriptive statistics, some analysis tools and various types of charts. Researchers found that level of nitrogen in the soil, organic carbon and temperature were all heavily linked to how much the plants yielded. In addition, distributions of yield varied a lot for different crop types and locations, suggesting that differences in climate and soil influence how crops are farmed. As a result, it is clear that using data from IoT in conjunction with analytics can encourage efficient farming that is effective and uses resources appropriately. This study shows that with predictive ML models, smart agriculture can improve the ability of resource-constrained regions to be more sustainable, stable and provide sufficient food.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alsowaiq, B., Almusaynid, N., Albhnasawi, E., Alfenais, W., & Sankaranarayanan, S. (2023). Machine learning enabled crop recommendation system for arid land. International Journal of Environmental Engineering and Development, 15(6), 156–161. https://doi.org/10.37394/232033.2023.1.7

Anghelof, M. M., Suciu, G., Craciunescu, R., & Marghescu, C. (2020). Intelligent system for precision agriculture. 2020 13th International Conference on Communications (COMM). https://doi.org/10.1109/comm48946.2020.9141981

AQUASTAT Database. (2015). Food and Agriculture Organization of United Nations. https://www.fao.org/aquastat/statistics/query/index.html

Arango, R. B., Campos, A. M., Combarro, E. F., Canas, E. R., & Díaz, I. (2016). Mapping cultivable land from satellite imagery with clustering algorithms. International Journal of Applied Earth Observation and Geoinformation, 49, 99–106. https://doi.org/10.1016/j.jag.2016.01.009

Bolu, C. A., Azeta, J., Alele, F., Daranijo, E. O., Onyeubani, P., & Abioye, A. A. (2019). Solar powered microcontroller-based automated irrigation system with moisture sensors. Journal of Physics: Conference Series, 1378(3), 032003. https://doi.org/10.1088/1742-6596/1378/3/032003

Boursianis, A. D., Papadopoulou, M. S., Gotsis, A., Wan, S., Sarigiannidis, P., Nikolaidis, S., et al. (2021). Smart irrigation system for precision agriculture—The AREThOU5A IoT platform. IEEE Sensors Journal, 21(16), 17539–17547. https://doi.org/10.1109/jsen.2020.3033526

Dhal, S. B., Kalafatis, S., Braga-Neto, U., Gadepally, K. C., Landivar-Scott, J. L., & Zhao, L. (2024). Testing the performance of LSTM and ARIMA models for in-season forecasting of canopy cover (CC) in cotton crops. Remote Sensing, 16(11), 1906. https://doi.org/10.3390/rs16111906

Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745. https://doi.org/10.3390/agriculture12101745

Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., & Cina, E. (2023). Crop prediction model using machine learning algorithms. Applied Sciences, 13(16), 9288. https://doi.org/10.3390/app13169288

. Gessesse, A. A., & Melesse, A. M. (2019). Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. Extreme Hydrology and Climate Variability, 81–92. https://doi.org/10.1016/b978-0-12-815998-9.00008-7

Ishak, M., Rahaman, M. S., & Mahmud, T. (2021). FarmEasy: An intelligent platform to empower crops prediction and crops marketing. 13th International Conference on Information & Communication Technology and System (ICTS), 224–229.

. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

. Kashyap, P. K., Kumar, S., Jaiswal, A., Prasad, M., & Gandomi, A. H. (2021). Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network. IEEE Sensors Journal, 21(16), 17479–17491. https://doi.org/10.1109/jsen.2021.3069266

. Kiruthika, S., & Karthika, D. (2023). IoT-based professional crop recommendation system using a weight-based long-term memory approach. Measurement: Sensors, 27, 100722. https://doi.org/10.1016/j.measen.2023.100722

. Krishnan, R. S., Julie, E. G., Robinson, Y. H., Raja, S., Kumar, R., Thong, P. H., et al. (2020). Fuzzy logic based smart irrigation system using Internet of Things. Journal of Cleaner Production, 252, 119902. https://doi.org/10.1016/j.jclepro.2019.119902

. Kshetri, N. (2014). The emerging role of big data in key development issues: Opportunities, challenges, and concerns. Big Data & Society, 1(2), 1–20. https://doi.org/10.1177/2053951714564227

. Kuo, T.-S., Tseng, K.-S., Yan, J.-W., Liu, Y.-C., & Wang, Y.-C. F. (2018). Deep Aggregation Net for land cover classification. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 247–2474. https://doi.org/10.1109/cvprw.2018.00046

. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674

. Madhumathi, R., Arumuganathan, T., & Shruthi, R. (2020). Soil NPK and moisture analysis using wireless sensor networks. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–6. https://doi.org/10.1109/icccnt49239.2020.9225547

. Ministry of Agriculture & Farmers Welfare. (2022). Annual Report 2021-22. Government of India.

. Motwani, A., Patil, P., Nagaria, V., Verma, S., & Ghane, S. (2022). Soil analysis and crop recommendation using machine learning. IEEE Xplore. https://doi.org/10.1109/iconat53423.2022.9725901

. Nevavuori, P., Narra, N., & Lipping, T. (2019). Crop yield prediction with deep convolutional neural networks. Computers and Electronics in Agriculture, 163, 104859. https://doi.org/10.1016/j.compag.2019.104859

. Oukil, A., Nourani, A., Soltani, A. A., Boulassel, M.-R., & Bencheikh, A. (2023). Improving agricultural sustainability through farm mergers: An energy efficiency perspective. International Journal of Agricultural Sustainability, 22(1). https://doi.org/10.1080/14735903.2023.2293598

. Pallevada, H., Potu, S. P., Munnangi, T. V. K., Rayapudi, B. C., & Gadde, S. R. (2021). Real-time soil nutrient detection and analysis. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 1035–1038. https://doi.org/10.1109/ICACITE51222.2021.9404549

. Pareeth, S., Karimi, P., Shafiei, M., & De Fraiture, C. (2019). Mapping agricultural land use patterns from time series of Landsat 8 using random forest based hierarchical approach. Remote Sensing, 11(5), 601. https://doi.org/10.3390/rs11050601

. Patel, K., & Patel, H. B. (2022). A comparative analysis of supervised machine learning algorithm for agriculture crop prediction. Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–5.

. Pozza, L. E., & Field, D. J. (2020). The science of soil security and food security. Soil Security, 1, 100002. https://doi.org/10.1016/j.soisec.2020.100002

. R, V. S., J, S., P, S. C., K, N., M, S. H., & K, M. S. (2022). Smart farming: The IoT based future agriculture. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), 150–155. https://doi.org/10.1109/icssit53264.2022.9716331

. Roy, S. K., Misra, S., Raghuwanshi, N. S., & Das, S. K. (2021). AgriSens: IoT-based dynamic irrigation scheduling system for water management of irrigated crops. IEEE Internet of Things Journal, 8(6), 5023–5030. https://doi.org/10.1109/jiot.2020.3036126

. Saha, G., Suvo, S. H., Tonmoy, F. T., Asad, J. B., Imran, M. T., & Azad, A. A. M. (2024). Smart soil monitoring system with crop and fertilizer recommendation features. 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), 1190–1196. https://doi.org/10.1109/csnt60213.2024.10545921

. Satir, O., & Berberoglu, S. (2016). Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Research, 192, 134–143. https://doi.org/10.1016/j.fcr.2016.04.028

. Schwalbert, R. A., Amado, T., Corassa, G., Pott, L. P., Prasad, P. V. V., & Ciampitti, I. A. (2020). Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricultural and Forest Meteorology, 284, 107886. https://doi.org/10.1016/j.agrformet.2019.107886

. Thilakarathne, N. N., Bakar, M. S. A., Abas, P. E., & Yassin, H. (2022). A cloud enabled crop recommendation platform for machine learning-driven precision farming. Sensors, 22(16), 6299. https://doi.org/10.3390/s22166299

. Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402

. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

Downloads

Published

2025-06-02

How to Cite

1.
Kadam AD, Bansod NS. Smart Agriculture: Iot-Based Yield Prediction Through Real-Time Soil Analysis and Machine Learning Models. J Neonatal Surg [Internet]. 2025Jun.2 [cited 2025Sep.21];14(4S):1354-63. Available from: https://jneonatalsurg.com/index.php/jns/article/view/6892