Nature-Inspired Synthesis of Copper Nanoparticles for Oncological Applications and Characterization – A Review
Keywords:
Copper, Nanoparticles, Anticancer, TherapeuticAbstract
Copper nanoparticles (CuNPs) have recently been of great interest because of their unique properties and versatility in applications across various industries, especially in medicine and dentistry. High surface-area-to-volume ratios, bio-physio-chemical functionalization, and antimicrobial and therapeutic capabilities make them effective in various biomedical applications, such as dental materials, wound healing, and cancer treatment. Recent developments in the approach of the green synthesis using extracts of plants and microorganisms have shown significant improvement toward ecofriendliness, biocompatibility, and enhancement of CuNPs functionalities, alleviating concerns about their sustainability and safety. CuNPs has shown promising anticancer effects through various mechanisms like ROS production, mitochondrial disruption, and inhibition of signaling pathways. They also provide tremendous action against microbial resistance and stimulate rapid healing of chronic wounds because of angiogenesis and tissue repair. Multifunctional hydrogels and functionalized scaffolds are the other innovative developments that emphasize the antioxidative, anti-inflammatory, and antibacterial properties of CuNPs. This review focuses on the properties, synthesis, and therapeutic applications of CuNPs, which have a potential to overcome global health challenges and transform clinical and industrial practices
Downloads
References
Xu, V. W., Nizami, M. Z. I., Yin, I. X., Yu, O. Y., Lung, C. Y. K., & Chu, C. H. (2022). Application of Copper Nanoparticles in Dentistry. Nanomaterials (Basel, Switzerland), 12(5), 805. https://doi.org/10.3390/nano12050805
Woźniak-Budych, M. J., Staszak, K., & Staszak, M. (2023). Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges. Molecules (Basel, Switzerland), 28(18), 6687. https://doi.org/10.3390/molecules28186687
Ramos-Zúñiga, J., Bruna, N., & Pérez-Donoso, J. M. (2023). Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. International journal of molecular sciences, 24(13), 10503. https://doi.org/10.3390/ijms241310503
Salvo, J., & Sandoval, C. (2022). Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns & trauma, 10, tkab047. https://doi.org/10.1093/burnst/tkab047
Ma, X., Zhou, S., Xu, X., & Du, Q. (2022). Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Frontiers in surgery, 9, 905892. https://doi.org/10.3389/fsurg.2022.905892
Tsymbal, S., Li, G., Agadzhanian, N., Sun, Y., Zhang, J., Dukhinova, M., Fedorov, V., & Shevtsov, M. (2022). Recent Advances in Copper-Based Organic Complexes and Nanoparticles for Tumor Theranostics. Molecules (Basel, Switzerland), 27(20), 7066. https://doi.org/10.3390/molecules27207066
Sandoval, C., Ríos, G., Sepúlveda, N., Salvo, J., Souza-Mello, V., & Farías, J. (2022). Effectiveness of Copper Nanoparticles in Wound Healing Process Using In Vivo and In Vitro Studies: A Systematic Review. Pharmaceutics, 14(9), 1838. https://doi.org/10.3390/pharmaceutics14091838
Gudkov, S. V., Burmistrov, D. E., Fomina, P. A., Validov, S. Z., & Kozlov, V. A. (2024). Antibacterial Properties of Copper Oxide Nanoparticles (Review). International journal of molecular sciences, 25(21), 11563. https://doi.org/10.3390/ijms252111563
Luque-Jacobo, C. M., Cespedes-Loayza, A. L., Echegaray-Ugarte, T. S., Cruz-Loayza, J. L., Cruz, I., de Carvalho, J. C., & Goyzueta-Mamani, L. D. (2023). Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications. Molecules (Basel, Switzerland), 28(12), 4838. https://doi.org/10.3390/molecules28124838
Antonio-Pérez, A., Durán-Armenta, L. F., Pérez-Loredo, M. G., & Torres-Huerta, A. L. (2023). Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. Micromachines, 14(10), 1882. https://doi.org/10.3390/mi14101882
Mikhailova E. O. (2023). Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules (Basel, Switzerland), 28(24), 8125. https://doi.org/10.3390/molecules28248125
Aldakheel, F. M., Sayed, M. M. E., Mohsen, D., Fagir, M. H., & El Dein, D. K. (2023). Green Synthesis of Silver Nanoparticles Loaded Hydrogel for Wound Healing; Systematic Review. Gels (Basel, Switzerland), 9(7), 530. https://doi.org/10.3390/gels9070530
Dubey, R. K., Shukla, S., & Hussain, Z. (2023). Green Synthesis of Silver Nanoparticles; A Sustainable Approach with Diverse Applications. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology, 39, e20230007. https://doi.org/10.62958/j.cjap.2023.007
Qasim, M., Clarkson, A. N., & Hinkley, S. F. R. (2023). Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. International journal of molecular sciences, 24(2), 1023. https://doi.org/10.3390/ijms24021023
Zúñiga-Miranda, J., Guerra, J., Mueller, A., Mayorga-Ramos, A., Carrera-Pacheco, S. E., Barba-Ostria, C., Heredia-Moya, J., & Guamán, L. P. (2023). Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. Nanomaterials (Basel, Switzerland), 13(22), 2919. https://doi.org/10.3390/nano13222919
Michalak, I., Dziergowska, K., Alagawany, M., Farag, M. R., El-Shall, N. A., Tuli, H. S., Emran, T. B., & Dhama, K. (2022). The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. The veterinary quarterly, 42(1), 68–94. https://doi.org/10.1080/01652176.2022.2073399
Letchumanan, D., Sok, S. P. M., Ibrahim, S., Nagoor, N. H., & Arshad, N. M. (2021). Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules, 11(4), 564. https://doi.org/10.3390/biom11040564
Tiwari, S., Verma, S. K., Bhagat, P., Yadav, S., Sharma, R., Aseri, G. K., Sohal, J. S., Sharma, D., Dwivedi, U. K., Singh, R., Singh, D., & Khare, N. (2021). An overview of the phytosynthesis of various metal nanoparticles. 3 Biotech, 11(11), 478. https://doi.org/10.1007/s13205-021-03014-0
Gebreslassie, Y. T., & Gebremeskel, F. G. (2024). Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications. Biotechnology reports (Amsterdam, Netherlands), 41, e00828. https://doi.org/10.1016/j.btre.2024.e00828
Gautam, M., Kim, J. O., & Yong, C. S. (2021). Fabrication of aerosol-based nanoparticles and their applications in biomedical fields. Journal of pharmaceutical investigation, 51(4), 361–375. https://doi.org/10.1007/s40005-021-00523-1
Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L., & Souto, E. B. (2020). Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials (Basel, Switzerland), 10(2), 292. https://doi.org/10.3390/nano10020292
García-Torra, V., Cano, A., Espina, M., Ettcheto, M., Camins, A., Barroso, E., Vazquez-Carrera, M., García, M. L., Sánchez-López, E., & Souto, E. B. (2021). State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. Toxics, 9(8), 195. https://doi.org/10.3390/toxics9080195
Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). 'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), 84. https://doi.org/10.1186/s12951-018-0408-4
Bouzayani, B., & Sanromán, M. Á. (2024). Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater. Molecules (Basel, Switzerland), 29(10), 2188. https://doi.org/10.3390/molecules29102188
Nzilu, D. M., Madivoli, E. S., Makhanu, D. S., Wanakai, S. I., Kiprono, G. K., & Kareru, P. G. (2023). Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Scientific reports, 13(1), 14030. https://doi.org/10.1038/s41598-023-41119-z
Priya, M., Venkatesan, R., Deepa, S., Sana, S. S., Arumugam, S., Karami, A. M., Vetcher, A. A., & Kim, S. C. (2023). Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Scientific reports, 13(1), 18838. https://doi.org/10.1038/s41598-023-46002-5
Cao, Y., Dhahad, H. A., El-Shorbagy, M. A., Alijani, H. Q., Zakeri, M., Heydari, A., Bahonar, E., Slouf, M., Khatami, M., Naderifar, M., Iravani, S., Khatami, S., & Dehkordi, F. F. (2021). Green synthesis of bimetallic ZnO-CuO nanoparticles and their cytotoxicity properties. Scientific reports, 11(1), 23479. https://doi.org/10.1038/s41598-021-02937-1
Thiruvengadam, M., Gopinath, S. C. B., & Venkatesan, J. (2019). Synthesis and characterization of copper nanoparticles using Millettia pinnata flower extract: Antimicrobial, antioxidant, and anticancer properties. Journal of Environmental Chemical Engineering, 7(3), 103248. https://doi.org/10.1016/j.jece.2019.103248
Kalimuthu, K., Rajendran, P., & Mohan, K. (2020). Copper nanoparticles from Magnolia kobus leaf extract: Synthesis, characterization, and biomedical applications. Journal of Nanotechnology, 2020, 12-17. https://doi.org/10.1155/2020/7391871
Kulkarni, S. P., Khusro, A., & Shakeel, F. (2019). Eucalyptus sp. leaf extract-assisted synthesis of copper nanoparticles: Antimicrobial, anticancer, and antioxidant properties. Applied Nanoscience, 9(5), 1153-1161. https://doi.org/10.1007/s13204-019-01098-5
Subhashini, S., Kumar, A. D., & Rani, M. (2018). Green synthesis of copper nanoparticles using Azadirachta indica leaf extract and their biomedical applications. Environmental Science and Pollution Research, 25(28), 28294-28305. https://doi.org/10.1007/s11356-018-2023-9
Sethi, P., Yadav, A., & Kumar, P. (2020). CuNPs from Lawsonia inermis leaf extract: Synthesis, characterization, and biomedical applications. Materials Science and Engineering C, 113, 110987. https://doi.org/10.1016/j.msec.2020.110987
Vigneshwaran, N., & Kumar, S. P. (2020). Synthesis and applications of copper nanoparticles from Coriandrum sativum leaf extract: Antimicrobial, anticancer, and antioxidant properties. Journal of Nanobiotechnology, 18(1), 68. https://doi.org/10.1186/s12951-020-00659-1
Muthukumar, S., & Rajendran, P. (2018). Anticancer and antimicrobial potential of copper nanoparticles synthesized from Citrus limon peel extract. Materials Science and Engineering C, 88, 166-174. https://doi.org/10.1016/j.msec.2018.02.080
Patil, R. V., & Pal, S. (2019). Green synthesis of copper nanoparticles from Allium sativum extract and their application in anticancer, antibacterial, and antifungal therapies. Materials Science and Engineering C, 102, 206-215. https://doi.org/10.1016/j.msec.2019.04.022
Rani, N., & Singh, P. (2020). Neuroprotective and antioxidant properties of copper nanoparticles synthesized from Bacopa monnieri leaf extract. Journal of Nanomedicine, 2020, 12-18. https://doi.org/10.1177/2046981020901302
Sangeetha, M., & Kumar, P. (2021). Synthesis of copper nanoparticles from Rosmarinus officinalis leaf extract: Antimicrobial, anticancer, and antioxidant activities. Journal of Nanoscience and Nanotechnology, 21(8), 4037-4044. https://doi.org/10.1166/jnn.2021.18979
Thai, S. F., Jones, C. P., Robinette, B. L., Ren, H., Vallant, B., Fisher, A., & Kitchin, K. T. (2021). Effects of Copper Nanoparticles on mRNA and Small RNA Expression in Human Hepatocellular Carcinoma (HepG2) Cells. Journal of nanoscience and nanotechnology, 21(10), 5083–5098. https://doi.org/10.1166/jnn.2021.19328
Chen, H., Feng, X., Gao, L., Mickymaray, S., Paramasivam, A., Abdulaziz Alfaiz, F., Almasmoum, H. A., Ghaith, M. M., Almaimani, R. A., & Aziz Ibrahim, I. A. (2021). Inhibiting the PI3K/AKT/mTOR signalling pathway with copper oxide nanoparticles from Houttuynia cordata plant: attenuating the proliferation of cervical cancer cells. Artificial cells, nanomedicine, and biotechnology, 49(1), 240–249. https://doi.org/10.1080/21691401.2021.1890101
Abdollahzadeh, H., Pazhang, Y., Zamani, A., & Sharafi, Y. (2024). Green synthesis of copper oxide nanoparticles using walnut shell and their size dependent anticancer effects on breast and colorectal cancer cell lines. Scientific reports, 14(1), 20323. https://doi.org/10.1038/s41598-024-71234-4
Tian, S., Xu, J., Qiao, X., Zhang, X., Zhang, S., Zhang, Y., Xu, C., Wang, H., & Fang, C. (2024). CuO nanoparticles for glioma treatment in vitro and in vivo. Scientific reports, 14(1), 23229. https://doi.org/10.1038/s41598-024-74546-7
Ou, L., Wu, Z., Hu, X., Huang, J., Yi, Z., Gong, Z., Li, H., Peng, K., Shu, C., & Koole, L. H. (2024). A tissue-adhesive F127 hydrogel delivers antioxidative copper-selenide nanoparticles for the treatment of dry eye disease. Acta biomaterialia, 175, 353–368. https://doi.org/10.1016/j.actbio.2023.12.021
He, D., Liao, C., Li, P., Liao, X., & Zhang, S. (2024). Multifunctional photothermally responsive hydrogel as an effective whole-process management platform to accelerate chronic diabetic wound healing. Acta biomaterialia, 174, 153–162. https://doi.org/10.1016/j.actbio.2023.11.043
Ma, L., Tan, Y., Tong, Q., Cao, X., Liu, D., Ma, X., Jiang, X., & Li, X. (2024). Collagen Scaffolds Functionalized by Cu2+-Chelated EGCG Nanoparticles with Anti-Inflammatory, Anti-Oxidation, Vascularization, and Anti-Bacterial Activities for Accelerating Wound Healing. Advanced healthcare materials, 13(12), e2303297. https://doi.org/10.1002/adhm.202303297
Tian, J., Dong, X., Sabola, E. E., Wang, Y., Chen, K., Zhu, M., Dai, B., Zhang, S., Guo, F., Shi, K., Chi, J., & Xu, P. (2024). Sequential Regulation of Local Reactive Oxygen Species by Ir@Cu/Zn-MOF Nanoparticles for Promoting Infected Wound Healing. ACS biomaterials science & engineering, 10(6), 3792–3805. https://doi.org/10.1021/acsbiomaterials.4c00261
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.