Nature-Inspired Synthesis of Copper Nanoparticles for Oncological Applications and Characterization – A Review

Authors

  • Mohammed Khalid
  • Ashok Kumar B S
  • Disha N S
  • Mamatha H S

Keywords:

Copper, Nanoparticles, Anticancer, Therapeutic

Abstract

Copper nanoparticles (CuNPs) have recently been of great interest because of their unique properties and versatility in applications across various industries, especially in medicine and dentistry. High surface-area-to-volume ratios, bio-physio-chemical functionalization, and antimicrobial and therapeutic capabilities make them effective in various biomedical applications, such as dental materials, wound healing, and cancer treatment. Recent developments in the approach of the green synthesis using extracts of plants and microorganisms have shown significant improvement toward ecofriendliness, biocompatibility, and enhancement of CuNPs functionalities, alleviating concerns about their sustainability and safety. CuNPs has shown promising anticancer effects through various mechanisms like ROS production, mitochondrial disruption, and inhibition of signaling pathways. They also provide tremendous action against microbial resistance and stimulate rapid healing of chronic wounds because of angiogenesis and tissue repair. Multifunctional hydrogels and functionalized scaffolds are the other innovative developments that emphasize the antioxidative, anti-inflammatory, and antibacterial properties of CuNPs. This review focuses on the properties, synthesis, and therapeutic applications of CuNPs, which have a potential to overcome global health challenges and transform clinical and industrial practices

Downloads

Download data is not yet available.

References

Xu, V. W., Nizami, M. Z. I., Yin, I. X., Yu, O. Y., Lung, C. Y. K., & Chu, C. H. (2022). Application of Copper Nanoparticles in Dentistry. Nanomaterials (Basel, Switzerland), 12(5), 805. https://doi.org/10.3390/nano12050805

Woźniak-Budych, M. J., Staszak, K., & Staszak, M. (2023). Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges. Molecules (Basel, Switzerland), 28(18), 6687. https://doi.org/10.3390/molecules28186687

Ramos-Zúñiga, J., Bruna, N., & Pérez-Donoso, J. M. (2023). Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. International journal of molecular sciences, 24(13), 10503. https://doi.org/10.3390/ijms241310503

Salvo, J., & Sandoval, C. (2022). Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns & trauma, 10, tkab047. https://doi.org/10.1093/burnst/tkab047

Ma, X., Zhou, S., Xu, X., & Du, Q. (2022). Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Frontiers in surgery, 9, 905892. https://doi.org/10.3389/fsurg.2022.905892

Tsymbal, S., Li, G., Agadzhanian, N., Sun, Y., Zhang, J., Dukhinova, M., Fedorov, V., & Shevtsov, M. (2022). Recent Advances in Copper-Based Organic Complexes and Nanoparticles for Tumor Theranostics. Molecules (Basel, Switzerland), 27(20), 7066. https://doi.org/10.3390/molecules27207066

Sandoval, C., Ríos, G., Sepúlveda, N., Salvo, J., Souza-Mello, V., & Farías, J. (2022). Effectiveness of Copper Nanoparticles in Wound Healing Process Using In Vivo and In Vitro Studies: A Systematic Review. Pharmaceutics, 14(9), 1838. https://doi.org/10.3390/pharmaceutics14091838

Gudkov, S. V., Burmistrov, D. E., Fomina, P. A., Validov, S. Z., & Kozlov, V. A. (2024). Antibacterial Properties of Copper Oxide Nanoparticles (Review). International journal of molecular sciences, 25(21), 11563. https://doi.org/10.3390/ijms252111563

Luque-Jacobo, C. M., Cespedes-Loayza, A. L., Echegaray-Ugarte, T. S., Cruz-Loayza, J. L., Cruz, I., de Carvalho, J. C., & Goyzueta-Mamani, L. D. (2023). Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications. Molecules (Basel, Switzerland), 28(12), 4838. https://doi.org/10.3390/molecules28124838

Antonio-Pérez, A., Durán-Armenta, L. F., Pérez-Loredo, M. G., & Torres-Huerta, A. L. (2023). Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. Micromachines, 14(10), 1882. https://doi.org/10.3390/mi14101882

Mikhailova E. O. (2023). Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules (Basel, Switzerland), 28(24), 8125. https://doi.org/10.3390/molecules28248125

Aldakheel, F. M., Sayed, M. M. E., Mohsen, D., Fagir, M. H., & El Dein, D. K. (2023). Green Synthesis of Silver Nanoparticles Loaded Hydrogel for Wound Healing; Systematic Review. Gels (Basel, Switzerland), 9(7), 530. https://doi.org/10.3390/gels9070530

Dubey, R. K., Shukla, S., & Hussain, Z. (2023). Green Synthesis of Silver Nanoparticles; A Sustainable Approach with Diverse Applications. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology, 39, e20230007. https://doi.org/10.62958/j.cjap.2023.007

Qasim, M., Clarkson, A. N., & Hinkley, S. F. R. (2023). Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. International journal of molecular sciences, 24(2), 1023. https://doi.org/10.3390/ijms24021023

Zúñiga-Miranda, J., Guerra, J., Mueller, A., Mayorga-Ramos, A., Carrera-Pacheco, S. E., Barba-Ostria, C., Heredia-Moya, J., & Guamán, L. P. (2023). Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. Nanomaterials (Basel, Switzerland), 13(22), 2919. https://doi.org/10.3390/nano13222919

Michalak, I., Dziergowska, K., Alagawany, M., Farag, M. R., El-Shall, N. A., Tuli, H. S., Emran, T. B., & Dhama, K. (2022). The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. The veterinary quarterly, 42(1), 68–94. https://doi.org/10.1080/01652176.2022.2073399

Letchumanan, D., Sok, S. P. M., Ibrahim, S., Nagoor, N. H., & Arshad, N. M. (2021). Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules, 11(4), 564. https://doi.org/10.3390/biom11040564

Tiwari, S., Verma, S. K., Bhagat, P., Yadav, S., Sharma, R., Aseri, G. K., Sohal, J. S., Sharma, D., Dwivedi, U. K., Singh, R., Singh, D., & Khare, N. (2021). An overview of the phytosynthesis of various metal nanoparticles. 3 Biotech, 11(11), 478. https://doi.org/10.1007/s13205-021-03014-0

Gebreslassie, Y. T., & Gebremeskel, F. G. (2024). Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications. Biotechnology reports (Amsterdam, Netherlands), 41, e00828. https://doi.org/10.1016/j.btre.2024.e00828

Gautam, M., Kim, J. O., & Yong, C. S. (2021). Fabrication of aerosol-based nanoparticles and their applications in biomedical fields. Journal of pharmaceutical investigation, 51(4), 361–375. https://doi.org/10.1007/s40005-021-00523-1

Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L., & Souto, E. B. (2020). Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials (Basel, Switzerland), 10(2), 292. https://doi.org/10.3390/nano10020292

García-Torra, V., Cano, A., Espina, M., Ettcheto, M., Camins, A., Barroso, E., Vazquez-Carrera, M., García, M. L., Sánchez-López, E., & Souto, E. B. (2021). State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. Toxics, 9(8), 195. https://doi.org/10.3390/toxics9080195

Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). 'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), 84. https://doi.org/10.1186/s12951-018-0408-4

Bouzayani, B., & Sanromán, M. Á. (2024). Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater. Molecules (Basel, Switzerland), 29(10), 2188. https://doi.org/10.3390/molecules29102188

Nzilu, D. M., Madivoli, E. S., Makhanu, D. S., Wanakai, S. I., Kiprono, G. K., & Kareru, P. G. (2023). Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Scientific reports, 13(1), 14030. https://doi.org/10.1038/s41598-023-41119-z

Priya, M., Venkatesan, R., Deepa, S., Sana, S. S., Arumugam, S., Karami, A. M., Vetcher, A. A., & Kim, S. C. (2023). Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Scientific reports, 13(1), 18838. https://doi.org/10.1038/s41598-023-46002-5

Cao, Y., Dhahad, H. A., El-Shorbagy, M. A., Alijani, H. Q., Zakeri, M., Heydari, A., Bahonar, E., Slouf, M., Khatami, M., Naderifar, M., Iravani, S., Khatami, S., & Dehkordi, F. F. (2021). Green synthesis of bimetallic ZnO-CuO nanoparticles and their cytotoxicity properties. Scientific reports, 11(1), 23479. https://doi.org/10.1038/s41598-021-02937-1

Thiruvengadam, M., Gopinath, S. C. B., & Venkatesan, J. (2019). Synthesis and characterization of copper nanoparticles using Millettia pinnata flower extract: Antimicrobial, antioxidant, and anticancer properties. Journal of Environmental Chemical Engineering, 7(3), 103248. https://doi.org/10.1016/j.jece.2019.103248

Kalimuthu, K., Rajendran, P., & Mohan, K. (2020). Copper nanoparticles from Magnolia kobus leaf extract: Synthesis, characterization, and biomedical applications. Journal of Nanotechnology, 2020, 12-17. https://doi.org/10.1155/2020/7391871

Kulkarni, S. P., Khusro, A., & Shakeel, F. (2019). Eucalyptus sp. leaf extract-assisted synthesis of copper nanoparticles: Antimicrobial, anticancer, and antioxidant properties. Applied Nanoscience, 9(5), 1153-1161. https://doi.org/10.1007/s13204-019-01098-5

Subhashini, S., Kumar, A. D., & Rani, M. (2018). Green synthesis of copper nanoparticles using Azadirachta indica leaf extract and their biomedical applications. Environmental Science and Pollution Research, 25(28), 28294-28305. https://doi.org/10.1007/s11356-018-2023-9

Sethi, P., Yadav, A., & Kumar, P. (2020). CuNPs from Lawsonia inermis leaf extract: Synthesis, characterization, and biomedical applications. Materials Science and Engineering C, 113, 110987. https://doi.org/10.1016/j.msec.2020.110987

Vigneshwaran, N., & Kumar, S. P. (2020). Synthesis and applications of copper nanoparticles from Coriandrum sativum leaf extract: Antimicrobial, anticancer, and antioxidant properties. Journal of Nanobiotechnology, 18(1), 68. https://doi.org/10.1186/s12951-020-00659-1

Muthukumar, S., & Rajendran, P. (2018). Anticancer and antimicrobial potential of copper nanoparticles synthesized from Citrus limon peel extract. Materials Science and Engineering C, 88, 166-174. https://doi.org/10.1016/j.msec.2018.02.080

Patil, R. V., & Pal, S. (2019). Green synthesis of copper nanoparticles from Allium sativum extract and their application in anticancer, antibacterial, and antifungal therapies. Materials Science and Engineering C, 102, 206-215. https://doi.org/10.1016/j.msec.2019.04.022

Rani, N., & Singh, P. (2020). Neuroprotective and antioxidant properties of copper nanoparticles synthesized from Bacopa monnieri leaf extract. Journal of Nanomedicine, 2020, 12-18. https://doi.org/10.1177/2046981020901302

Sangeetha, M., & Kumar, P. (2021). Synthesis of copper nanoparticles from Rosmarinus officinalis leaf extract: Antimicrobial, anticancer, and antioxidant activities. Journal of Nanoscience and Nanotechnology, 21(8), 4037-4044. https://doi.org/10.1166/jnn.2021.18979

Thai, S. F., Jones, C. P., Robinette, B. L., Ren, H., Vallant, B., Fisher, A., & Kitchin, K. T. (2021). Effects of Copper Nanoparticles on mRNA and Small RNA Expression in Human Hepatocellular Carcinoma (HepG2) Cells. Journal of nanoscience and nanotechnology, 21(10), 5083–5098. https://doi.org/10.1166/jnn.2021.19328

Chen, H., Feng, X., Gao, L., Mickymaray, S., Paramasivam, A., Abdulaziz Alfaiz, F., Almasmoum, H. A., Ghaith, M. M., Almaimani, R. A., & Aziz Ibrahim, I. A. (2021). Inhibiting the PI3K/AKT/mTOR signalling pathway with copper oxide nanoparticles from Houttuynia cordata plant: attenuating the proliferation of cervical cancer cells. Artificial cells, nanomedicine, and biotechnology, 49(1), 240–249. https://doi.org/10.1080/21691401.2021.1890101

Abdollahzadeh, H., Pazhang, Y., Zamani, A., & Sharafi, Y. (2024). Green synthesis of copper oxide nanoparticles using walnut shell and their size dependent anticancer effects on breast and colorectal cancer cell lines. Scientific reports, 14(1), 20323. https://doi.org/10.1038/s41598-024-71234-4

Tian, S., Xu, J., Qiao, X., Zhang, X., Zhang, S., Zhang, Y., Xu, C., Wang, H., & Fang, C. (2024). CuO nanoparticles for glioma treatment in vitro and in vivo. Scientific reports, 14(1), 23229. https://doi.org/10.1038/s41598-024-74546-7

Ou, L., Wu, Z., Hu, X., Huang, J., Yi, Z., Gong, Z., Li, H., Peng, K., Shu, C., & Koole, L. H. (2024). A tissue-adhesive F127 hydrogel delivers antioxidative copper-selenide nanoparticles for the treatment of dry eye disease. Acta biomaterialia, 175, 353–368. https://doi.org/10.1016/j.actbio.2023.12.021

He, D., Liao, C., Li, P., Liao, X., & Zhang, S. (2024). Multifunctional photothermally responsive hydrogel as an effective whole-process management platform to accelerate chronic diabetic wound healing. Acta biomaterialia, 174, 153–162. https://doi.org/10.1016/j.actbio.2023.11.043

Ma, L., Tan, Y., Tong, Q., Cao, X., Liu, D., Ma, X., Jiang, X., & Li, X. (2024). Collagen Scaffolds Functionalized by Cu2+-Chelated EGCG Nanoparticles with Anti-Inflammatory, Anti-Oxidation, Vascularization, and Anti-Bacterial Activities for Accelerating Wound Healing. Advanced healthcare materials, 13(12), e2303297. https://doi.org/10.1002/adhm.202303297

Tian, J., Dong, X., Sabola, E. E., Wang, Y., Chen, K., Zhu, M., Dai, B., Zhang, S., Guo, F., Shi, K., Chi, J., & Xu, P. (2024). Sequential Regulation of Local Reactive Oxygen Species by Ir@Cu/Zn-MOF Nanoparticles for Promoting Infected Wound Healing. ACS biomaterials science & engineering, 10(6), 3792–3805. https://doi.org/10.1021/acsbiomaterials.4c00261

Downloads

Published

2025-05-29

How to Cite

1.
Khalid M, B S AK, N S D, H S M. Nature-Inspired Synthesis of Copper Nanoparticles for Oncological Applications and Characterization – A Review. J Neonatal Surg [Internet]. 2025May29 [cited 2025Jul.11];14(28S):889-97. Available from: https://jneonatalsurg.com/index.php/jns/article/view/6702

Similar Articles

You may also start an advanced similarity search for this article.