In Silico Modelling Studies to Identification of Lead Compounds from Swietenia Macrophylla Against Cancer

Authors

  • Bhargavi M
  • Harathi P
  • Ajay Kumar B
  • Anil Kumar Reddy C
  • Praveen Kumar P

Keywords:

Swietenia macrophylla, Molecular docking, Anti-Cancer

Abstract

Objective: Cancer, a malignant neoplasm, is a multifactorial disease characterized by the progressive accumulation of genetic and epigenetic alterations. The present study aimed to identify potential lead compounds from Swietenia macrophylla with anticancer activity using molecular docking and in silico pharmacokinetic and toxicity profiling.

Methods: Phytoconstituents of Swietenia macrophylla were identified and their structures retrieved from the PubChem database. Target proteins including Cyclin-Dependent Kinase-2 (PDB ID: 1DI8), Cyclin-Dependent Kinase-6 (PDB ID: 1XO2), Vascular Endothelial Growth Factor-2 (PDB ID: 2OH4), Anti-Apoptotic Protein (PDB ID: 2O2F), and Insulin Growth Factor (PDB ID: 2OJ9) were obtained from the Protein Data Bank. Molecular docking was performed using PyRx to evaluate binding affinity and interaction with active sites. Docking results were visualized using BIOVIA Discovery Studio Visualizer. Pharmacokinetic and toxicity parameters of the selected compounds were predicted using SWISS ADME and pkCSM tools.

Results: The compounds Catechin, 3β-Hydroxystigmast-5-en-7-one, 3-Hydroxystigmast-5-en-7-one, and Epicatechin demonstrated strong binding affinity and favorable interactions, including hydrogen bonding and hydrophobic interactions with target proteins. These compounds also exhibited good pharmacokinetic properties and safety profiles. In comparison, standard anticancer drugs such as Seliciclib, Palbociclib, Lucitanib, Venetoclax, and Ceritinib showed similar binding interactions but demonstrated suboptimal pharmacokinetic and safety profiles.

Conclusion: The study concludes that Catechin, 3β-Hydroxystigmast-5-en-7-one, 3-Hydroxystigmast-5-en-7-one, and Epicatechin are promising lead compounds from Swietenia macrophylla with potential application in cancer therapy

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Hanahan, D., & Weinberg, R. A. (2011). "Hallmarks of cancer: The next generation." Cell, 144(5), 646-674.

McDermott, D. F., et al. (2015). "Cancer immunotherapy: The current landscape and future directions." Cancer Journal, 21(5), 332-339.

Tiwari, P., et al. (2014). "Phytochemical and pharmacological properties of Swietenia macrophylla." Asian Pacific Journal of Tropical Biomedicine, 4(9), 700-704.

Zhao, Y., et al. (2017). "Chemopreventive and anticancer potential of Swietenia macrophylla extracts and its active phytochemicals." Journal of Ethnopharmacology, 198, 116-123.

Kitchen, D. B., et al. (2004). "Docking and scoring in virtual screening for drug discovery: Methods and applications." Nature Reviews Drug Discovery, 3(11), 935-949.

Connolly JD, Labbé C. Tetranortriterpenoids and related compounds. Part 24. The interrelation of swietenine and swietenolide, the major tetranortriterpenoids from the seeds of Swietenia macrophylla (meliaceae). Journal of the Chemical Society, Perkin Transactions 1. 1980:529-30.

Taylor AR, Taylor DA. Limonoid extractives from Swietenia macrophylla. Phytochemistry. 1983 Jan 1;22(12):2870-1.

Kojima K, Isaka K, Ogihara Y. Tetranortriterpenoids from Swietenia macrophylla. Chemical and pharmaceutical bulletin. 1998 Mar 15;46(3):523-5.

Wu SF, Lin CK, Chuang YS, Chang FR, Tseng CK, Wu YC, Lee JC. Anti‐hepatitis C virus activity of 3‐hydroxy caruilignan C from Swietenia macrophylla stems. Journal of viral hepatitis. 2012 May;19(5):364-70.

Guevara AP, Apilado A, Sakurai H, Kozuka M, Takuda H. Anti-inflammatory, antimutagenicity, and antitumor-promoting activities of mahogany seeds, Swietenia macrophylla (Meliaceae). Philippine Journal of Science (Philippines). 1996.

Dharmalingam K, Tan BK, Mahmud MZ, Sedek SA, Majid MI, Kuah MK, Sulaiman SF, Ooi KL, Khan NA, Muhammad TS, Tan MW. Swietenia macrophylla extract promotes the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection. Journal of ethnopharmacology. 2012 Jan 31;139(2):657-63.

Maiti A, Dewanjee S, Jana G, Mandal SC. Hypoglycemic effect of Swietenia macrophylla seeds against type II diabetes. International Journal of Green Pharmacy (IJGP). 2008;2(4).

Das A, Sunilson JA, Gopinath R, Radhamani S, Nilugal K. Antinociceptive activity of the fruits of Swietenia macrophylla King. J. Pharm. Res. 2009 Sep;2(9):1367-9.

Kalpana K, Pugalendi KV. Antioxidative and hypolipidemic efficacy of alcoholic seed extract of Swietenia macrophylla in streptozotocin diabetic rats. Basic Clin Physiol Pharmacol 2011;22(1-2):11–21.

Falah S, Suzuki T, Katayama T. Chemical constituents from Swietenia macrophylla bark and their antioxidant activity. Pak. J. Biol. Sci. 2008 Aug 15;11:2007-12.

Maiti A, Dewanjee S, Mandal SC, Annadurai S. Exploration of antimicrobial potential of methanol and water extract of seeds of Swietenia macrophylla (family: Meliaceae), to substantiate folklore claim. Iranian Journal of Pharmacology and Therapeutics. 2007 Sep 10;6(1):99-0.

Maiti A, Dewanjee S, Mandal SC. In vivo evaluation of antidiarrhoeal activity of the seed of Swietenia macrophylla King (Meliaceae). Tropical journal of pharmaceutical research. 2007 Jul 31;6(2):711-6.

Soediro I, Padmawinata K, Wattimena JR, Rekita S. Study of the active antimalarial methanolic extract of Swietenia macrophylla King (Meliaceae). Acta Pharmaceutica Indonesia. 1990;15(1):1-3.

Mootoo BS, Ali A, Motilal R, Pingal R, Ramlal A, Khan A, Reynolds WF, McLean S. Limonoids from Swietenia macrophylla and S. aubrevilleana. Journal of natural products. 1999 Nov 29;62(11):1514-7.

El Zalabani SM, El-Askary HI, Mousa OM, Issa MY, Zaitoun AA, Abdel-Sattar E. Acaricidal activity of Swietenia mahogani and Swietenia macrophylla ethanolic extracts against Varroa destructor in honeybee colonies. Experimental parasitology. 2012 Feb 1;130(2):166-70.

Biovia DS. Discovery studio modeling environment. 2015.

Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic acids research. 2018 Jul 2;46(W1):W363-7.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry. 2010 Jan 30;31(2):455-61.

Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports. 2017 Mar 3;7(1):1-3.

Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry. 2015 May 14;58(9):4066-72.

Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 2000 Aug 1;16(8):747-8.

Yuan, Y., et al. (2016). "Catechin as a potent CDK inhibitor in cancer treatment." Journal of Medicinal Chemistry, 59(10), 4676-4685.

Bala, A., et al. (2018). "Epicatechin's anti-cancer effects in breast cancer models." Journal of Cancer Research, 23(4), 678-688.

Wells, M., et al. (2017). "Liver toxicity associated with Seliciclib in clinical trials." Drug Safety, 40(7), 653-660.

Hernandez, V., et al. (2018). "Toxicity profiles of cyclin-dependent kinase inhibitors in cancer therapy." Cancer Treatment Reviews, 65, 92-101.

Newman, D. J., & Cragg, G. M. (2016). "Natural products as sources of new drugs over the 30 years from 1981 to 2014." Journal of Natural Products, 79(3), 629-661.

Downloads

Published

2025-05-27

How to Cite

1.
M B, P H, B AK, C AKR, Kumar P P. In Silico Modelling Studies to Identification of Lead Compounds from Swietenia Macrophylla Against Cancer. J Neonatal Surg [Internet]. 2025May27 [cited 2025Oct.12];14(25S):1045-59. Available from: https://jneonatalsurg.com/index.php/jns/article/view/6627