Pathogenesis and Therapeutic Advances in Cholelithiasis: From Gut Microbiota Regulation to the Frontiers of Precision Medicine
Keywords:
Cholelithiasis, Gut Microbiota, FXR agonists, Metabolic dysbiosis, Bile acid metabolism, Precision medicineAbstract
Cholelithiasis, or gallstone disease, has long been associated with cholesterol oversaturation and biliary stasis. The gut microbiota and metabolic dysbiosis play an important role in the disease's development. This study explores the role of gut microbial community structure and metabolic derangements in gallstone formation and clinical consequences. This review integrates current literature on microbiome studies, multi-omics characterization, and precision medicine techniques in cholelithiasis. Gut dysbiosis disrupts bile acid balance, promotes inflammation, and facilitates cholesterol crystallization. Disease-associated microbial signatures include reduced diversity, increased Proteobacteria, and impaired bile salt hydrolase activity. New diagnostic technologies, such as Artificial Intelligence (AI)-based imaging and exosome biomarkers, aid in early detection. New molecular pathway medicines, such as Farnesoid X Receptor (FXR) agonists, customized probiotics, and phage therapy, have the potential to go beyond standard surgical treatments. Shortcomings include a lack of longitudinal data, limited efficacy of targeted drug delivery, and complexities in multi-omics integration. Combining gut microbiota information with metabolic and precision diagnostic approaches opens up new possibilities for individualized cholelithiasis prevention and therapy. Multidisciplinary and computational improvements are required to properly incorporate these findings into clinical practice.
Downloads
References
Georgescu, D., Ionita, I., Lascu, A., Hut, E.F., Dragan, S., Ancusa, O.E., Ionita, M., Calamar-Popovici, D., Georgescu, L.A. and Lighezan, D.F., 2022. Gallstone disease and bacterial metabolic performance of gut microbiota in middle-aged and older patients. International Journal of General Medicine, pp.5513-5531.https://doi.org/10.2147/IJGM.S350104
Liu, Y., Li, H., Sun, T., Sun, G., Jiang, B., Liu, M., Wang, Q., Li, T., Cao, J., Zhao, L. and Xiao, F., 2025. The gut microbiome and metabolome characteristics of patients with cholesterol gallstones suggest the preventive potential of prebiotics. iMeta, 4(1), p.e70000.https://doi.org/10.1002/imt2.70000
Xu, Y., Jing, H., Wang, J., Zhang, S., Chang, Q., Li, Z., Wu, X. and Zhang, Z., 2022. Disordered gut microbiota correlates with altered fecal bile acid metabolism and post-cholecystectomy diarrhea. Frontiers in microbiology, 13, p.800604.https://doi.org/10.3389/fmicb.2022.800604
Hu, J., Tang, J., Zhang, X., Yang, K., Zhong, A., Yang, Q., Liu, Y., Li, Y. and Zhang, T., 2023. Landscape in the gallbladder mycobiome and bacteriome of patients undergoing cholelithiasis with chronic cholecystitis. Frontiers in Microbiology, 14, p.1131694.https://doi.org/10.3389/fmicb.2023.1131694
Liu, X., Qi, X., Han, R., Mao, T. and Tian, Z., 2023. Gut microbiota causally affects cholelithiasis: a two-sample Mendelian randomization Research. Frontiers in cellular and infection microbiology, 13, p.1253447.https://doi.org/10.3389/fcimb.2023.1253447
Li, W., Ren, A., Qin, Q., Zhao, L., Peng, Q., Ma, R. and Luo, S., 2023. Causal associations between human gut microbiota and cholelithiasis: a Mendelian randomization Research. Frontiers in Cellular and Infection Microbiology, 13, p.1169119.https://doi.org/10.3389/fcimb.2023.1169119
Batra, P., 2024. Synergy of gut microbiome and bile acids in inducing cholelithiasis. Journal of Advanced Scientific Research, 15(08), pp.1-9.https://doi.org/10.55218/JASR.2024150801
Liu, Q., Zheng, L., Wang, Y., Huang, Z., Zhu, J., Fang, M., Xie, L., Ding, C., Gu, Y., Xu, D. and Jin, H., 2023. Primary choledocholithiasis occurrence and recurrence are synergetically modulated by the bile microbiome and metabolome alternations. Life Sciences, 331, p.122073.https://doi.org/10.1016/j.lfs.2023.122073
Costa, C.J., Nguyen, M.T.T., Vaziri, H. and Wu, G.Y., 2024. Genetics of gallstone disease and their clinical significance: a narrative review. Journal of Clinical and Translational Hepatology, 12(3), p.316.http://dx.doi.org/10.14218/JCTH.2023.00563
Kim, S., Seo, S.U. and Kweon, M.N., 2024, July. Gut microbiota-derived metabolites tune host homeostasis fate. In Seminars in Immunopathology (Vol. 46, No. 1, p. 2). Berlin/Heidelberg: Springer Berlin Heidelberg.https://doi.org/10.1007/s00281-024-01012-x
Wang, X., Fang, Y., Liang, W., Cai, Y., Wong, C.C., Wang, J., Wang, N., Lau, H.C.H., Jiao, Y., Zhou, X. and Ye, L., 2025. Gut–living translocation of pathogen Klebsiella pneumoniae promotes hepatocellular carcinoma in mice. Nature Microbiology, pp.1-16.https://doi.org/10.1038/s41564-024-01890-9
Ma, Y., Yue, P., Zhang, J., Yuan, J., Liu, Z., Chen, Z., Zhang, H., Zhang, C., Zhang, Y., Dong, C. and Lin, Y., 2024. Early prediction of acute gallstone pancreatitis severity: a novel machine learning model based on CT features and open access online prediction platform. Annals of Medicine, 56(1), p.2357354.https://doi.org/10.1080/07853890.2024.2357354
Zhang, X., Wang, Z., Zheng, Y., Yu, Q., Zeng, M., Bai, L., Yang, L., Guo, M., Jiang, X. and Gan, J., 2023. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases. International Journal of Molecular Medicine, 51(4), p.35.https://doi.org/10.3892/ijmm.2023.5238
Murabayashi, T., Ogawa, T., Koshita, S., Kanno, Y., Kusunose, H., Sakai, T., Masu, K., Yonamine, K., Miyamoto, K., Kozakai, F. and Endo, K., 2020. Peroral cholangioscopy-guided electrohydraulic lithotripsy with a SpyGlass DS versus a conventional digital cholangioscope for difficult bile duct stones. Internal Medicine, 59(16), pp.1925-1930.https://doi.org/10.2169/internalmedicine.4463-20
Ni, D.J., Yang, Q.F., Nie, L., Xu, J., He, S.Z. and Yao, J., 2024. The past, present, and future of endoscopic management for biliary strictures: technological innovations and stent advancements. Frontiers in Medicine, 11, p.1334154.https://doi.org/10.3389/fmed.2024.1334154
Wang, B., Sun, M.Y., Long, A.H., Cao, H.Y., Ren, S., Bian, Y.Q., Lu, X., Gu, H.T., Liu, C.H. and Liu, P., 2015. Yin-Chen-Hao-Tang alleviates biliary obstructive cirrhosis in rats by inhibiting biliary epithelial cell proliferation and activation. Pharmacognosy Magazine, 11(42), p.417. https://doi.org/10.4103/0973-1296.153098
Zhan, L., Pan, Y.Z., Chen, L., Zhang, H., Zhang, H., Song, J., Tzeng, C.M. and Sun, C.Y., 2016. Prevalence of ABCB4 polymorphisms in gallstone disease in han-Chinese population. American Journal of Translational Research, 8(2), p.1218.’
Zhang, R., Chen, C., Zheng, S., Zhang, J., Chen, W. and Chen, Z., 2025. Preliminary Research of biliary microbiota and identification of bacterial species associated with pigmented gallstone formation. Frontiers in Cellular and Infection Microbiology, 15, p.1532512.https://doi.org/10.3389/fcimb.2025.1532512
Ding, L., Wang, S., Jiang, W., Miao, Y., Liu, W., Yang, F., Zhang, J., Chi, W., Liu, T., Liu, Y. and Wang, S., 2023. Identification of intestinal microbial community in gallstone patients with metagenomic next-generation sequencing. Diagnostics, 13(16), p.2712.https://doi.org/10.3390/diagnostics13162712
Komorniak, N., Pawlus, J., Gaweł, K., Hawryłkowicz, V. and Stachowska, E., 2024. Cholelithiasis, Gut Microbiota, and Bile Acids after Bariatric Surgery—Can Cholelithiasis Be Prevented by Modulating the Microbiota? A Literature Review. Nutrients, 16(15), p.2551.https://doi.org/10.3390/nu16152551
Ahmed, A.S., Ahmed, S.S., Mohamed, S., Salman, N.E., Humidan, A.A.M., Ibrahim, R.F., Salim, R.S., Elamir, A.A.M., Hakim, E.M., Humidan Jr, A.A.M. and Salim, R., 2024. Advancements in Cholelithiasis Diagnosis: A Systematic Review of Machine Learning Applications in Imaging Analysis. Cureus, 16(8).https://doi.org/10.7759/cureus.66453
Hu, H., Shao, W., Liu, Q., Liu, N., Wang, Q., Xu, J., Zhang, X., Weng, Z., Lu, Q., Jiao, L. and Chen, C., 2022. Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion. Nature communications, 13(1), p.252.https://doi.org/10.1038/s41467-021-27758-8
Hu, X., Binxu, Q., Shao, G.Z., Huang, Y. and Qiu, W., 2024. Gut microbiota, circulating metabolites, and gallstone disease: a Mendelian randomization Research. Frontiers in microbiology, 15, p.1336673.https://doi.org/10.3389/fmicb.2024.1336673
Ebrahimpoor, M., Menezes, R., Xu, N. and Goeman, J.J., 2024. OCEAN: Flexible Feature Set Aggregation for Analysis of Multi-omics Data. arXiv preprint arXiv:2410.19523.https://doi.org/10.48550/arXiv.2410.19523
Wu, Y. and Xie, L., 2024. AI-driven multi-omics integration for multi-scale predictive modeling of causal genotype-environment-phenotype relationships. arXiv preprint arXiv:2407.06405.https://doi.org/10.1016/j.csbj.2024.12.030
Wang, H., Gong, J., Chen, J., Zhang, W., Sun, Y. and Sun, D., 2024. Intestinal microbiota and biliary system diseases. Frontiers in Cellular and Infection Microbiology, 14, p.1362933.https://doi.org/10.3389/fcimb.2024.1362933
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.