Eco-Friendly Fabrication of Metallic Nanoparticles via Moullava spicata: A Review on Therapeutic Potentials

Authors

  • Chandrakant B. Patil
  • Shivaji D. Jadhav
  • Jayant C. Thorat
  • Namdev R. Jadhav
  • Somnath B. Bhinge
  • Sonali V. Dhamal

DOI:

https://doi.org/10.63682/jns.v14i24S.5957

Keywords:

plant-mediated synthesis, green nanoparticles, metallic nanoparticles, phytochemicals, therapeutic activity, antimicrobial, antioxidant, anti-inflammatory, and anticancer

Abstract

The growing concern over the environmental and biological hazards associated with conventional nanoparticle synthesis has led to the exploration of green nanotechnology. Biogenic synthesis using plant extracts offers a sustainable and non-toxic alternative, enabling the fabrication of metallic nanoparticles (MNPs) with significant biomedical potential. Moullava spicata, an underexplored medicinal plant, is rich in phytoconstituents such as flavonoids, tannins, and phenolic compounds, which serve as natural reducing and stabilizing agents in nanoparticle synthesis. This review presents a comprehensive overview of the phytochemistry of Moullava spicata, its role in the green synthesis of metallic nanoparticles, characterization methods, and their therapeutic applications particularly antimicrobial, antioxidant, anti-inflammatory, and anticancer properties. The review also highlights current challenges and future prospects for translating these nanoparticles into clinical and pharmaceutical applications

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Malik, S., Muhammad, K., &Waheed, Y. (2023). Emerging applications of nanotechnology in healthcare and medicine. Molecules, 28(18), 6624. https://doi.org/10.3390/molecules28186624

Deka, K., Nongbet, R. D., Das, K., Saikia, P., Kaur, S., Talukder, A., &Thakuria, B. (2025). Understanding the mechanism underlying the green synthesis of Metallic nanoparticles using plant extract(s) with special reference to Silver, Gold, Copper and Zinc oxide nanoparticles. Hybrid Advances, 9, 100399. https://doi.org/10.1016/j.hybadv.2025.100399

Wahab, S., Salman, A., Khan, Z., Khan, S., Krishnaraj, C., & Yun, S. (2023). Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance—Unraveling Mechanisms and Enhancing Medication Efficacy. International Journal of Molecular Sciences, 24(19), 14897. https://doi.org/10.3390/ijms241914897

Patel, J., Kumar, G. S., Roy, H., Maddiboyina, B., Leporatti, S., &Bohara, R. A. (2024). From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. Discover Nano, 19(1). https://doi.org/10.1186/s11671-024-04021-9

Pechyen, C., Tangnorawich, B., Toommee, S., Marks, R., &Parcharoen, Y. (2024). Green synthesis of metal nanoparticles, characterization, and biosensing applications. Sensors International, 5, 100287. https://doi.org/10.1016/j.sintl.2024.100287

Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M., & Kim, J. (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 9(12), 1719. https://doi.org/10.3390/nano9121719

Rabbi, M. B. U., Haque, S., &Bedoura, S. (2024). Advancements in synthesis, immobilization, characterization, and multifaceted applications of silver nanoparticles: A comprehensive review. Heliyon, 10(24), e40931. https://doi.org/10.1016/j.heliyon.2024.e40931

Kumar, I., Mondal, M., & Sakthivel, N. (2019). Green synthesis of phytogenic nanoparticles. In Elsevier eBooks (pp. 37–73). https://doi.org/10.1016/b978-0-08-102579-6.00003-4

Haider, F. U., Zulfiqar, U., Ain, N. U., Hussain, S., Maqsood, M. F., Ejaz, M., Yong, J. W. H., & Li, Y. (2024). Harnessing plant extracts for eco-friendly synthesis of iron nanoparticle (Fe-NPs): Characterization and their potential applications for ameliorating environmental pollutants. Ecotoxicology and Environmental Safety, 281, 116620. https://doi.org/10.1016/j.ecoenv.2024.116620

Martinengo, B., Diamanti, E., Uliassi, E., &Bolognesi, M. L. (2024). Harnessing the 12 Green Chemistry Principles for Sustainable Antiparasitic Drugs: Toward the One Health Approach. ACS Infectious Diseases, 10(6), 1856–1870. https://doi.org/10.1021/acsinfecdis.4c00172

Bruneau, A., De Queiroz, L. P., Ringelberg, J. J., Borges, L. M., Da Costa Bortoluzzi, R. L., Brown, G. K., Cardoso, D. B. O. S., Clark, R. P., De Souza Conceição, A., Cota, M. M. T., Demeulenaere, E., De Stefano, R. D., Ebinger, J. E., Ferm, J., Fonseca-Cortés, A., Gagnon, E., Grether, R., Guerra, E., Haston, E., . . . Terra, V. (2024). Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification. PhytoKeys, 240, 1–552. https://doi.org/10.3897/phytokeys.240.101716

Sharma, A., Khanna, S., Kaur, G., & Singh, I. (2021). Medicinal plants and their components for wound healing applications. Future Journal of Pharmaceutical Sciences, 7(1). https://doi.org/10.1186/s43094-021-00202-w

Lohith, K. (2014). Phytochemical and Antioxidant Evaluation of Moullava spicata (Dalzell) Nicolson Leaf Extract. Annual Research & Review in Biology, 4(1), 188–197. https://doi.org/10.9734/arrb/2014/3370

Zuhrotun, A., Oktaviani, D. J., &Hasanah, A. N. (2023). Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules, 28(7), 3240. https://doi.org/10.3390/molecules28073240

Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C., & Oyedeji, A. O. (2022). Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules, 12(5), 627. https://doi.org/10.3390/biom12050627

Ritu, N., Verma, K. K., Das, A., & Chandra, P. (2023). Phytochemical-Based Synthesis of Silver nanoparticle: mechanism and potential applications. BioNanoScience, 13(3), 1359–1380. https://doi.org/10.1007/s12668-023-01125-x

P, R., & C, T. T. (2024). Green Synthesized Moullava spicata (Dalz.) Nicolson Leaf Extract Mediated Silver Nanoparticles Potentiate Antioxidant and Anticancer Activity in Human Bone Marrow Neuroblastoma Cancer Cells. International Journal of Pharmaceutical Sciences and Drug Research, 662–670. https://doi.org/10.25004/ijpsdr.2024.160415

Kumari, S., Raturi, S., Kulshrestha, S., Chauhan, K., Dhingra, S., András, K., Thu, K., Khargotra, R., & Singh, T. (2023). A comprehensive review on various techniques used for synthesizing nanoparticles. Journal of Materials Research and Technology, 27, 1739–1763. https://doi.org/10.1016/j.jmrt.2023.09.291

Kumari, S., Raturi, S., Kulshrestha, S., Chauhan, K., Dhingra, S., András, K., Thu, K., Khargotra, R., & Singh, T. (2023). A comprehensive review on various techniques used for synthesizing nanoparticles. Journal of Materials Research and Technology, 27, 1739–1763. https://doi.org/10.1016/j.jmrt.2023.09.291

Lohith, K. (2014b). Phytochemical and Antioxidant Evaluation of Moullava spicata (Dalzell) Nicolson Leaf Extract. Annual Research & Review in Biology, 4(1), 188–197. https://doi.org/10.9734/arrb/2014/3370

Valke, D. (n.d.). Moullava spicata. Flickr. https://www.flickr.com/photos/dinesh_valke/2042406759

Herbarium JCB. (n.d.). https://indiaflora-ces.iisc.ac.in/FloraPeninsular/herbsheet.php?id=2330&cat=7

Gagnon, E., Bruneau, A., Hughes, C. E., De Queiroz, L. P., & Lewis, G. P. (2016). A new generic system for the pantropical Caesalpinia group (Leguminosae). PhytoKeys, 71, 1–160. https://doi.org/10.3897/phytokeys.71.9203

International Plant Names Index. (n.d.). https://www.ipni.org/

Bruneau, A., De Queiroz, L. P., Ringelberg, J. J., Borges, L. M., Da Costa Bortoluzzi, R. L., Brown, G. K., Cardoso, D. B. O. S., Clark, R. P., De Souza Conceição, A., Cota, M. M. T., Demeulenaere, E., De Stefano, R. D., Ebinger, J. E., Ferm, J., Fonseca-Cortés, A., Gagnon, E., Grether, R., Guerra, E., Haston, E., . . . Terra, V. (2024b). Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification. PhytoKeys, 240, 1–552. https://doi.org/10.3897/phytokeys.240.101716

Biswas, S. (2018). FLORISTIC DIVERSITY IN WESTERN GHATS: DOCUMENTATION, CONSERVATION AND BIOPROSPECTION– A PRIORITY AGENDA FOR ACTION INSA Honorary Scientist. www.academia.edu. https://www.academia.edu/35921127/FLORISTIC_DIVERSITY_IN_WESTERN_GHATS_DOCUMENTATION_CONSERVATION_AND_BIOPROSPECTION_A_PRIORITY_AGENDA_FOR_ACTION_INSA_Honorary_Scientist

Karpe, D. G., Lawande, S. P., &P.G.Research Center, Department of Chemistry, Shri Chhatrapati Shivaji College, Shrigonda, Dist-Ahmednagar-413701 (MS) India. (2014). Phytochemical Screening, Total Flavonoid Content and Antimicrobial Study of M.spicata (Dalz.)Nicolson. International Journal of Pharmacognosy and Phytochemical Research, 6(3), 584–587. http://impactfactor.org/PDF/IJPPR/6/IJPPR,Vol6,Issue3,Article29.pdf

P, R., & C, T. T. (2024b). Green Synthesized Moullava spicata (Dalz.) Nicolson Leaf Extract Mediated Silver Nanoparticles Potentiate Antioxidant and Anticancer Activity in Human Bone Marrow Neuroblastoma Cancer Cells. International Journal of Pharmaceutical Sciences and Drug Research, 662–670. https://doi.org/10.25004/ijpsdr.2024.160415

Abubakar, A., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences, 12(1), 1. https://doi.org/10.4103/jpbs.jpbs_175_19

Phytochemical profiling of wagatea spicata using GC-MS to reveal the pharmacological significance | International Journal of Current Research. (n.d.). https://www.journalcra.com/article/phytochemical-profiling-wagatea-spicata-using-gc-ms-reveal-pharmacological-significance

Jan, R., Khan, M., Asaf, S., Lubna, N., Asif, S., & Kim, K. (2022b). Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health. Plants, 11(19), 2623. https://doi.org/10.3390/plants11192623

Sengupta, B., Biswas, P., Roy, D., Lovett, J., Simington, L., Fry, D. R., & Travis, K. (2022). Anticancer properties of kaempferol on cellular signaling pathways. Current Topics in Medicinal Chemistry, 22(30), 2474–2482. https://doi.org/10.2174/1568026622666220907112822

Akhter, M. S., Rahman, M. A., Ripon, R. K., Mubarak, M., Akter, M., Mahbub, S., Mamun, F. A., &Sikder, M. T. (2024). A systematic Review on Green Synthesis of Silver Nanoparticles Using Plants Extract and Their Bio-medical Applications. Heliyon, 10(11), e29766. https://doi.org/10.1016/j.heliyon.2024.e29766

Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313

Singh, H., Desimone, M. F., Pandya, S., Jasani, S., George, N., Adnan, M., Aldarhami, A., Bazaid, A. S., &Alderhami, S. A. (2023). Revisiting the green synthesis of nanoparticles: uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. International Journal of Nanomedicine, Volume 18, 4727–4750. https://doi.org/10.2147/ijn.s419369

Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry X, 13, 100217. https://doi.org/10.1016/j.fochx.2022.100217

Huang, W., Wang, Y., Tian, W., Cui, X., Tu, P., Li, J., Shi, S., & Liu, X. (2022). Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics, 11(10), 1380. https://doi.org/10.3390/antibiotics11101380

Siddiqi, K. S., Husen, A., & Rao, R. a. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1). https://doi.org/10.1186/s12951-018-0334-5

Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020b). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518. https://doi.org/10.1016/j.bcab.2020.101518

Vinukonda, A., Bolledla, N., Jadi, R. K., Chinthala, R., &Devadasu, V. R. (2025). Synthesis of nanoparticles using advanced techniques. Next Nanotechnology, 8, 100169. https://doi.org/10.1016/j.nxnano.2025.100169

Thanh, N. T. K., Maclean, N., &Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114(15), 7610–7630. https://doi.org/10.1021/cr400544s

Farshad, M., &Rasaiah, J. (2023). Kinetics of nanoparticle nucleation, growth, coalescence and aggregation: A theoretical study of (Ag)n nanoparticle formation based on population balance modulated by ligand binding. Chemical Physics, 573, 112002. https://doi.org/10.1016/j.chemphys.2023.112002

Hosseinzadeh, E., Foroumadi, A., &Firoozpour, L. (2022). What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response. Inorganic Chemistry Communications, 147, 110243. https://doi.org/10.1016/j.inoche.2022.110243

Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020c). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518. https://doi.org/10.1016/j.bcab.2020.101518

Dikshit, P., Kumar, J., Das, A., Sadhu, S., Sharma, S., Singh, S., Gupta, P., & Kim, B. (2021). Green synthesis of metallic nanoparticles: applications and limitations. Catalysts, 11(8), 902. https://doi.org/10.3390/catal11080902

Liu, H., Zhang, H., Wang, J., & Wei, J. (2017). Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arabian Journal of Chemistry, 13(1), 1011–1019. https://doi.org/10.1016/j.arabjc.2017.09.004

Chavan, R. R., Bhinge, S. D., Bhutkar, M. A., Randive, D. S., Wadkar, G. H., &Todkar, S. S. (2020) Green synthesis of silver and iron nanoparticles using fresh plant extracts of blumeaeriantha dc: evaluation of its hair growth promoting activity and partial characterization. Journal of Cosmetic Dermatology, 20(04), 1283-1297. DOI - https://doi.org/10.1111/jocd.13713

Noviyanto, A., Amalia, R., Maulida, P. Y. D., Dioktyanto, M., Arrosyid, B. H., Aryanto, D., Zhang, L., Wee, A. T. S., &Arramel, N. (2023). Anomalous Temperature-Induced particle size reduction in manganese oxide nanoparticles. ACS Omega, 8(47), 45152–45162. https://doi.org/10.1021/acsomega.3c08012

Puspadewi, R., Milanda, T., Muhaimin, M., &Chaerunisaa, A. Y. (2025). Nanoparticle-Encapsulated plant polyphenols and flavonoids as an enhanced delivery system for Anti-Acne therapy. Pharmaceuticals, 18(2), 209. https://doi.org/10.3390/ph18020209

Chavan, R. R., Bhinge, S. D., Bhutkar, M. A., Randive, D. S., Wadkar, G. H., Todkar, S. S., Urade, M. N. (2020) Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumeaeriantha DC plant extract. Materials Today Communications, 24, 101320. https://doi.org/10.1016/j.mtcomm.2020.101320

Kaneko, H., Matsumoto, T., Huaman, J. L. C., Ishijima, M., Suzuki, K., Miyamura, H., & Balachandran, J. (2021). Selection criteria for metal precursors and solvents for targeted synthesis of metallic nanostructures via kinetic control in the polyol process. Inorganic Chemistry, 60(5), 3025–3036. https://doi.org/10.1021/acs.inorgchem.0c03266

Moosavy, M., De La Guardia, M., Mokhtarzadeh, A., Khatibi, S. A., Hosseinzadeh, N., &Hajipour, N. (2023). Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33632-y

Behzadi, S., Ghasemi, F., Ghalkhani, M., Ashkarran, A. A., Akbari, S. M., Pakpour, S., Hormozi-Nezhad, M. R., Jamshidi, Z., Mirsadeghi, S., Dinarvand, R., Atyabi, F., &Mahmoudi, M. (2015). Determination of nanoparticles using UV-Vis spectra. Nanoscale, 7(12), 5134–5139. https://doi.org/10.1039/c4nr00580e

Dhaka, A., Mali, S. C., Sharma, S., & Trivedi, R. (2023). A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 6, 101108. https://doi.org/10.1016/j.rechem.2023.101108

Pasieczna-Patkowska, S., Cichy, M., &Flieger, J. (2025). Application of fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules, 30(3), 684. https://doi.org/10.3390/molecules30030684

Mohamed, M., Jaafar, J., Ismail, A., Othman, M., & Rahman, M. (2017). Fourier Transform Infrared (FTIR) spectroscopy. In Elsevier eBooks (pp. 3–29). https://doi.org/10.1016/b978-0-444-63776-5.00001-2

Ali, A., Chiang, Y. W., & Santos, R. M. (2022). X-ray Diffraction Techniques for Mineral Characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals, 12(2), 205. https://doi.org/10.3390/min12020205

Islam, N. U., Amin, R., Shahid, M., & Amin, M. (2016). Gummy gold and silver nanoparticles of apricot (Prunus armeniaca) confer high stability and biological activity. Arabian Journal of Chemistry, 12(8), 3977–3992. https://doi.org/10.1016/j.arabjc.2016.02.017

Inkson, B. (2016). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Elsevier eBooks (pp. 17–43). https://doi.org/10.1016/b978-0-08-100040-3.00002-x

Pyrz, W. D., &Buttrey, D. J. (2008). Particle Size Determination using TEM: A discussion of image acquisition and analysis for the novice microscopist. Langmuir, 24(20), 11350–11360. https://doi.org/10.1021/la801367j

Stetefeld, J., McKenna, S. A., & Patel, T. R. (2016). Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Reviews, 8(4), 409–427. https://doi.org/10.1007/s12551-016-0218-6

Silva, N., Ramírez, S., Díaz, I., Garcia, A., & Hassan, N. (2019). Easy, quick, and reproducible sonochemical synthesis of CUO nanoparticles. Materials, 12(5), 804. https://doi.org/10.3390/ma12050804

Clogston, J. D., & Patri, A. K. (2010). Zeta Potential Measurement. Methods in Molecular Biology, 63–70. https://doi.org/10.1007/978-1-60327-198-1_6

Shejawal, K. P., Randive, D. D., Bhinge, S. D., Bhutkar, M. A., Todkar, S. S., Mulla, A. S., Jadhav, N. R. (2021) Green synthesis of Silver, Iron and gold nanoparticles of Lycopene extracted from tomato: their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. Journal of Materials Science: Materials in Medicine, 32, 19. DOI: 10.1007/s10856-021-06489-8,

Randive, D. D., Shejawal, K. P., Bhinge, S. D., Bhutkar, M. A., Wadkar, G. H., Mulla, A. S., Jadhav, N. R. (2020) Green synthesis of Silver and iron nanoparticles of isolated proanthrocynidine: its Characterization, antioxidant, antimicrobial and cytotoxic activities against COLO320DM and HT29, Journal of Genetic Engineering and Biotechnology, 18-43. https://doi.org/10.1186/s43141-020-00058-2,

Randive, D. D., Shejawal, K. P., Bhinge, S. D., Bhutkar, M. A., Wadkar, G. H., Mulla, A. S., Jadhav, N. R. (2020) Green synthesis of gold nanoparticles of isolated citrus bioflavonoid from orange: Characterization and in vitro cytotoxicity against colon cancer cellines COLO 320DM and HT29. Indian Drugs, 57(08), 61-69.

Alshameri, A. W., &Owais, M. (2022). Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OpenNano, 8, 100077. https://doi.org/10.1016/j.onano.2022.100077

Lohith, K. (2014g). Phytochemical and Antioxidant Evaluation of Moullava spicata (Dalzell) Nicolson Leaf Extract. Annual Research & Review in Biology, 4(1), 188–197. https://doi.org/10.9734/arrb/2014/3370

K, L., R, V., Pushpalatha, K. C., & Joshi, C. G. (2013). In-Vitro Cytotoxic Study of Moullava spicata (Dalz.) Nicolson leaf extract. Indian Journal of Forensic Medicine & Toxicology, 7(2), 182. https://doi.org/10.5958/j.0973-9130.7.2.042

More, P. R., Pandit, S., De Filippis, A., Franci, G., Mijakovic, I., &Galdiero, M. (2023). Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 11(2), 369. https://doi.org/10.3390/microorganisms11020369

Goodarzi, V., Zamani, H., Bajuli, L., &Moradshahi, A. (2014, September 1). Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticles’ synthesis. https://pmc.ncbi.nlm.nih.gov/articles/PMC5019224/

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326

Andrade, F., Jenipher, C., Gurav, N., Nadaf, S., Khan, M. S., Kalaskar, M., Bhinge, S., Bhole, R., Ayyanar, M., Gurav, S., (2024) Endophytic Fungus Colletotrichum siamense Derived Silver Nanoparticles: Biomimetic Synthesis, Process Optimization and Their Biomedical Applications. Journal of Inorganic and Organometallic Polymers and Materials. 34, 6056–6070. https://doi.org/10.1007/s10904-024-03235-9

Ilyasov, I. R., Beloborodov, V. L., Selivanova, I. A., & Terekhov, R. P. (2020). ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. International Journal of Molecular Sciences, 21(3), 1131. https://doi.org/10.3390/ijms21031131

Payne, A. C., Mazzer, A., Clarkson, G. J. J., & Taylor, G. (2013). Antioxidant assays – consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Science & Nutrition, 1(6), 439–444. https://doi.org/10.1002/fsn3.71

Sharma, M. K., & Sharma, R. K. (2021). A research paper on Applied Medical phytogeography of Shekhawati region. International Journal of Engineering and Applied Sciences (IJEAS), 8(12), 34. https://doi.org/10.31873/IJEAS.8.12.11

Acero, N., & Muñoz-Mingarro, D. (2012). Effect on tumor necrosis factor-Α production and antioxidant ability of black Alder, as factors related to its Anti-Inflammatory properties. Journal of Medicinal Food, 15(6), 542–548. https://doi.org/10.1089/jmf.2011.0281

Kandilarov, I., Gardjeva, P., Georgieva-Kotetarova, M., Zlatanova, H., Vilmosh, N., Kostadinova, I., Katsarova, M., Atliev, K., & Dimitrova, S. (2023). Effect of plant extracts combinations on TNF-Α, IL-6 and IL-10 levels in serum of rats exposed to acute and chronic stress. Plants, 12(17), 3049. https://doi.org/10.3390/plants12173049

Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochimica Et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1799(10–12), 775–787. https://doi.org/10.1016/j.bbagrm.2010.05.004

P, R., & C, T. T. (2024c). Green Synthesized Moullava spicata (Dalz.) Nicolson Leaf Extract Mediated Silver Nanoparticles Potentiate Antioxidant and Anticancer Activity in Human Bone Marrow Neuroblastoma Cancer Cells. International Journal of Pharmaceutical Sciences and Drug Research, 662–670. https://doi.org/10.25004/ijpsdr.2024.160415

Todaria, M., Maity, D., & Awasthi, R. (2024). Biogenic metallic nanoparticles as game-changers in targeted cancer therapy: recent innovations and prospects. Future Journal of Pharmaceutical Sciences, 10(1). https://doi.org/10.1186/s43094-024-00601-9

Mikhailova, E. O. (2020). Silver nanoparticles: Mechanism of action and Probable Bio-Application. Journal of Functional Biomaterials, 11(4), 84. https://doi.org/10.3390/jfb11040084

Alshehri, B. (2024). Cytochrome c and cancer cell metabolism: A new perspective. Saudi Pharmaceutical Journal, 32(12), 102194. https://doi.org/10.1016/j.jsps.2024.102194

Chota, A., Abrahamse, H., & George, B. P. (2024). Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagnosis and Photodynamic Therapy, 48, 104252. https://doi.org/10.1016/j.pdpdt.2024.104252

Martínez-Sanmiguel, J. J., Zarate-Triviño, D., García-García, M. P., García-Martín, J. M., Mayoral, Á., Huttel, Y., Martínez, L., & Cholula-Díaz, J. L. (2024). Antitumor activity of bimetallic silver/gold nanoparticles against MCF-7 breast cancer cells. RSC Advances, 14(53), 39102–39111. https://doi.org/10.1039/d4ra06227b

El‐Hussein, A., & Hamblin, M. R. (2016). ROS generation and DNA damage with photo‐inactivation mediated by silver nanoparticles in lung cancer cell line. IET Nanobiotechnology, 11(2), 173–178. https://doi.org/10.1049/iet-nbt.2015.0083

Naik, J., & David, M. (2022). ROS mediated apoptosis and cell cycle arrest in human lung adenocarcinoma cell line by silver nanoparticles synthesized using Swietenia macrophylla seed extract. Journal of Drug Delivery Science and Technology, 80, 104084. https://doi.org/10.1016/j.jddst.2022.104084

Jeyaraj, M., Arun, R., Sathishkumar, G., MubarakAli, D., Rajesh, M., Sivanandhan, G., Kapildev, G., Manickavasagam, M., Thajuddin, N., & Ganapathi, A. (2014). An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa). Materials Research Bulletin, 52, 15–24. https://doi.org/10.1016/j.materresbull.2013.12.060

Khatua, A., Prasad, A., Priyadarshini, E., Patel, A. K., Naik, A., Saravanan, M., Barabadi, H., Ghosh, L., Paul, B., Paulraj, R., & Meena, R. (2019). Emerging Antineoplastic Plant-Based Gold Nanoparticle Synthesis: A Mechanistic Exploration of their Anticancer Activity Toward Cervical Cancer Cells. Journal of Cluster Science, 31(6), 1329–1340. https://doi.org/10.1007/s10876-019-01742-1

Downloads

Published

2025-05-16

How to Cite

1.
B. Patil C, D. Jadhav S, Thorat JC, R. Jadhav N, B. Bhinge S, V. Dhamal S. Eco-Friendly Fabrication of Metallic Nanoparticles via Moullava spicata: A Review on Therapeutic Potentials. J Neonatal Surg [Internet]. 2025May16 [cited 2025Sep.21];14(24S):343-55. Available from: https://jneonatalsurg.com/index.php/jns/article/view/5957