Interpretable AI for Skin Disease Diagnosis: A Review on Enhancing Trust and Decision-Making in Dermatology
Keywords:
XAI, Interpretable AI, dermatology, LIME, SHAP, Grad-CAMAbstract
AI-driven dermatological diagnosis improves accuracy but faces challenges in interpretability and clinical trust. This review compares deep learning models like CNNs and Transformer-based architectures with techniques such as LIME, SHAP and also Grad-CAM which overcomes black box models by giving explanations for their results. It highlights dataset biases, the need for diverse datasets for better accuracy, and gaps in model generalizability, emphasizing the importance of standardized evaluation and human-AI collaboration for equitable AI adoption in dermatology across India and worldwide.
Downloads
Metrics
References
Ahammed, M., M. A. Mamun, and M. S. Uddin. 2022. "A Machine Learning Approach for Skin Disease Detection and Classification Using Image Segmentation." Healthcare Analytics 12:100122-10037. Elsevier. doi:10.1016/j.health.2022.100122.
Kavita, Thakur, J. S., and T. Narang. 2023. "The Burden of Skin Diseases in India: Global Burden of Disease Study 2017." Indian Journal of Dermatology, Venereology and Leprology 89:421-5. doi:10.25259/IJDVL_978_20.
Thamizhvani, T. R., A. K. Ajayan, V. Sannidhya, R. J. Hemalatha, and R. Chandrasekaran. 2022. "Psoriasis Skin Disease Identification Using Support Vector Machine (SVM) Image Classification and Determining the Growth Rate." Journal of Physics: Conference Series 2318:012034. doi:10.1088/1742-6596/2318/1/012034.
World Health Organization. "World Health Organization (WHO)." Available: https://www.who.int/. [Accessed: Sep. 3, 2024].
Aljanabi, M. H., F. A. Jumaa, A. O. Aftan, M. S. S. Alkafaji, N. Alanı, Z. H. Al-Tameemi, and D. H. Al-Mamoori. 2019. "Various Types of Skin Tumors Lesion Medical Imaging (STLMI) of Healthy and Unhealthy Moles: A Review and Computational of Segmentation, Classification, Methods, and Algorithms." IOP Conference Series: Materials Science and Engineering 518:052014. doi:10.1088/1757-899X/518/5/052014.
Kalbande, D., R. Naik, J. Jatakia, and U. Khopkar. 2020. "An Artificial Intelligence Approach for the Recognition of Early Stages of Eczema." International Journal of Medical Engineering and Informatics 12(1):52-61.
Hauser, K., A. Kurz, S. Haggenmüller, R. C. Maron, C. von Kalle, J. S. Utikal, F. Meier, S. Hobelsberger, F. F. Gellrich, M. Sergon, A. Hauschild, L. E. French, L. Heinzerling, J. G. Schlager, K. Ghoreschi, M. Schlaak, F. J. Hilke, G. Poch, H. Kutzner, C. Berking, M. V. Heppt, M. Erdmann, S. Haferkamp, D. Schadendorf, W. Sondermann, M. Goebeler, B. Schilling, J. N. Kather, S. Frohling, D. B. Lipka, A. Hekler, and E. Krieghoff-Henning. 2022. "Explainable Artificial Intelligence in Skin Cancer Recognition: A Systematic Review." European Journal of Cancer 167:54–69. doi:10.1016/j.ejca.2022.02.025.
Dalgard, F. J., U. Gieler, L. Tomas-Aragones, L. Lien, F. Poot, G. B. E. Jemec, L. Misery, C. Szabo, D. Linder, F. Sampogna, A. W. M. Evers, J. A. Halvorsen, F. Balieva, J. Szepietowski, D. Romanov, S. E. Marron, I. K. Altunay, A. Y. Finlay, S. S. Salek, and J. Kupfer. 2015. "The Psychological Burden of Skin Diseases: A Cross-Sectional Multicenter Study among Dermatological Out-Patients in 13 European Countries." Journal of Investigative Dermatology 135(4):984–991. doi:10.1038/jid.2014.530.
Mittal, R., F. Jeribi, R. J. Martin, V. Malik, S. J. Menachery, and J. Singh. 2024. "DermCDSM: Clinical Decision Support Model for Dermatosis Using Systematic Approaches of Machine Learning and Deep Learning." IEEE Access 12:45678-45689. doi:10.1109/ACCESS.2024.3373539.
Escale-Besa, A., J. Vidal-Alaball, Q. Miro Catalina, V. H. Garcia Gracia, F. X. Marin-Gomez, and A. Fuster-Casanovas. 2024. "The Use of Artificial Intelligence for Skin Disease Diagnosis in Primary Care Settings: A Systematic Review." Healthcare 12(12):1192-1202. doi:10.3390/healthcare12121192.
Fliorent, R., B. Fardman, A. Podwojniak, K. Javaid, I. J. Tan, H. Ghani, T. M. Truong, B. Rao, and C. Heath. 2024. "Artificial Intelligence in Dermatology: Advancements and Challenges in Skin of Color." Journal of Dermatology Research 63:455–461. doi:10.1111/ijd.17076.
Sorour, S. E., A. Abo Hany, M. S. Elredeny, A. Sedik, and R. M. Hussien. 2023. "An Automatic Dermatology Detection System Based on Deep Learning and Computer Vision." IEEE Access 11:12345-12356. doi:10.1109/ACCESS.2023.3340735.
Saranya, S. A., and R. Subhashini. 2023. "A Systematic Review of Explainable Artificial Intelligence Models and Applications: Recent Developments and Future Trends." Decision Analytics Journal 7. Elsevier. doi:10.1016/j.dajour.2023.
Metta, C., A. Beretta, R. Guidotti, Y. Yin, P. Gallinari, S. Rinzivillo, and F. Giannotti. 2023. "Improving Trust and Confidence in Medical Skin Lesion Diagnosis Through Explainable Deep Learning." International Journal of Data Science and Analytics. Springer. doi:10.1007/s41060-023-00401-z.
Vachmanus, S., T. Noraset, W. Piyanonpong, T. Rattananurom, and S. Tuarob. 2023. "DeepMetaForge: A Deep Vision-Transformer Metadata-Fusion Network for Automatic Skin Lesion Classification." IEEE Transactions on Medical Imaging 11(1):145467-145484. doi:10.1109/ACCESS.2023.3345225.
Nigar, N., M. S. Rahman, T. Ahmed, and A. M. Noor. 2022. "A Deep Learning Approach Based on Explainable Artificial Intelligence for Skin Lesion Classification." IEEE Access 10:220342–220355. doi:10.1109/ACCESS.2022.3224521.
Gairola, A. K., V. Kumar, A. K. Sahoo, M. Diwakar, P. Singh, and D. Garg. 2024. "Multi-feature Fusion Deep Network for Skin Disease Diagnosis." Multimedia Tools and Applications. doi:10.1007/s11042-024-18958-7.
Kolkur, S., and D. R. Kalbande. 2016. "Survey of Texture-Based Feature Extraction for Skin Disease Detection." 2016 International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India. IEEE Xplore, April 2017. doi:10.1109/ICTBIG.2016.7892649.
Debelee, T. G. 2023. "Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review." Diagnostics 13:3147. MDPI. doi:10.3390/diagnostics13193147.
Datta, S. K., M. A. Shaikh, S. N. Srihari, and M. Gao. 2021. "Soft Attention Improves Skin Cancer Classification Performance." In Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. Springer. 12929:13-25. doi:10.1007/978-3-030-87444-5_2.
Pacheco, P. A., L. D. T. Pimenta, J. C. Ferreira, M. G. Silva, J. C. B. P. Lima, and M. A. S. Pereira. 2020. "PAD-UFES-20: A Skin Lesion Dataset Composed of Patient Data and Clinical Images Collected from Smartphones." Data in Brief 14(1):100013-100023. Elsevier. doi:10.1016/j.health.2020.100013.
Panja, A., A. Saha, and M. T. Sharma. 2021. "An Approach to Skin Cancer Detection Using Keras and TensorFlow." Journal of Physics: Conference Series 1911:012032-012041. doi:10.1088/1742-6596/1911/1/012032.
Prasad, S., A. Kumar, and R. Singh. 2022. "Skin Cancer Lesions Classification Using Probabilistic Neural Network." Journal of Physics: Conference Series 2335:012028-012036. doi:10.1088/1742-6596/2335/1/012028.
Moataz, L., G. I. Salama, and M. H. Abd Elazeem. 2021. "Skin Cancer Diseases Classification Using Deep Convolutional Neural Network with Transfer Learning Model." Journal of Physics: Conference Series 2128:012013-012024. IOP Publishing. doi:10.1088/1742-6596/2128/1/012013.
Vasconcelos, C. N., and B. N. Vasconcelos. 2024. "Experiments Using Deep Learning for Dermoscopy Image Analysis." Pattern Recognition Letters 155:153-160. Elsevier. doi:10.1016/j.patrec.2024.08.009.
Kundu, D., M. M. Rahman, A. Rahman, D. Das, U. R. Siddiqi, M. G. R. Alam, S. K. Dey, G. Muhammad, and Z. Ali. 2024. "Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset." IEEE Access 12:15432-15445. doi:10.1109/ACCESS.2024.3370838.
Reshma, M., and B. P. Shan. 2020. "A Clinical Decision Support System for Micro Panoramic Melanoma Detection and Grading Using Soft Computing Technique." Measurement 163:108024. Elsevier. doi:10.1016/j.measurement.2020.108024.
Mayanja, J., E. H. Asanda, P. Tumwebaze, J. Mwesigwa, and G. Marvin. 2023. "Explainable Artificial Intelligence and Deep Transfer Learning for Skin Disease Diagnosis." Fourth International Conference on Image Processing and Capsule Networks, Lecture Notes in Networks and Systems 798. Springer. doi:10.1007/978-981-99-7093-3_47.
Nazir, A., A. Hussain, M. Singh, and A. Assad. 2024. "Deep Learning in Medicine: Advancing Healthcare with Intelligent Solutions and the Future of Holography Imaging in Early Diagnosis." Multimedia Tools and Applications. doi:10.1007/s11042-024-19694-8.
Chanda, T., T.-C. Bucher, K. Hauser, S. Hobelsberger, C. N. Garcia, H. Kittler, S. Podlipnik, P. Tschandl, C. Wies, C. Navarrete-Dechent, et al. 2023. "Dermatologist-Like Explainable AI Enhances Trust and Confidence in Diagnosing Melanoma." Nature Communications 14 (6574). doi:10.1038/s41467-023-43095-4.
Roy, S., D. Pal, and T. Meena. 2024. "Explainable Artificial Intelligence to Increase Transparency for Revolutionizing Healthcare Ecosystem and the Road Ahead." Network Modeling Analysis in Health Informatics and Bioinformatics 13 (4). doi:10.1007/s13721-023-00437-y.
Abbas, S., F. Ahmed, W. A. Khan, M. Ahmad, M. A. Khan, and T. M. Ghazal. 2025. "Intelligent Skin Disease Prediction System Using Transfer Learning and Explainable Artificial Intelligence." Scientific Reports 15: 1746. doi:10.1038/s41598-024-83966-4.
Rezk, E., M. Eltorki, and W. El-Dakhakhni. 2023. "Interpretable Skin Cancer Classification Based on Incremental Domain Knowledge Learning." Journal of Healthcare Informatics Research 7: 59–83. doi:10.1007/s41666-023-00127-4.
Moral, P., D. Mustafi, and S. K. Sahana. 2024. "PODBoost: An Explainable AI Model for Polycystic Ovarian Syndrome Detection Using Grey Wolf-Based Feature Selection Approach." Neural Computing and Applications 36: 18627–18644. doi:10.1007/s00521-024-10171-9.
Şahin, E., N. N. Arslan, and D. Özdemir. 2025. "Unlocking the Black Box: An In-Depth Review on Interpretability, Explainability, and Reliability in Deep Learning." Neural Computing and Applications 37: 859–965. doi:10.1007/s00521-024-10437-2.
Champendal, M., H. Müller, J. O. Prior, and C. S. dos Reis. 2023. "A Scoping Review of Interpretability and Explainability Concerning Artificial Intelligence Methods in Medical Imaging." European Journal of Radiology, Oct. doi:10.1016/j.ejrad.2023.111159.
Ali, S., F. Akhlaq, A. S. Imran, Z. Kastrati, S. M. Daudpota, and M. Moosa. 2023. "The Enlightening Role of Explainable Artificial Intelligence in Medical & Healthcare Domains: A Systematic Literature Review." European Journal of Radiology. doi:10.1016/j.ejrad.2023.111159.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.