A Data Analytics Suite for Exploratory Predictive, and Visual Analysis of Type 2 Diabetes

Authors

  • Valiki Siri Vennela
  • Gachikanti swamy
  • Yeligeti Raju
  • Nalikanti Arjun

Keywords:

Extensive data for medical care, data analysis, individualized treatment, medical data representation, forecasting analytics, risk assessment, type 2 diabetes

Abstract

The availability of large volumes of electronic records of T2D patient data provides opportunities for application of big data analysis to gain insight into the disease manifestation and its impact on patients. Data science in healthcare has the potential to identify hidden knowledge from the database, re-confirm existing knowledge, and aid in personalising treatment. In this paper, we present a suite of data analytics for T2D disease management that allows clinicians and researchers to identify associations between different patient biological markers and T2D related complications. The analytics suite consists of exploratory, predictive, and visual analytics with capabilities including multi-tier classification of T2D patient profiles that associate them to specific conditions, T2Drelated complication risk prediction, and prediction of patient response to a particular line of treatment.The analyses provided in this document examine sophisticated data evaluation methods, which are possible resources for clinical and decision-making processes that may enhance the management of T2D.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D.Soudris,S.Xydis,C.Baloukas,A.Hadzidimitriou,I.Chouvarda,

K. Stamatopoulos, N. Maglaveras, J. Chang, A. Raptopoulos, D. Manset,and B. Pierscionek, ‘‘AEGLE: A big bio-data analytics framework forintegrated health-care services,’’ in Proc. Int. Conf. Embedded Comput.Syst., Archit., Modeling, Simulation (SAMOS), Jul. 2015, pp. 246–253.

N. Holman, B. Young, and R.Gadsby, ‘‘Currentprevalence oftype 1 andtype2diabetesinadultsandchildrenintheU.K.,’’DiabeticMed.,vol.32,no. 9, pp. 1119–1120, Sep. 2015.

NumberofPeopleWithDiabetesReaches4.7Million.Accessed:Oct. 30, 2019. [Online]. Available: https://www.diabetes.org.U.K./about_us/news/new-stats-People-livingwith-diabetes

C.D.MathersandD.Loncar,‘‘Projectionsofglobalmortalityandburdenofdiseasefrom2002to2030,’’PLoSMed.,vol.3,no.11,p.e442,Nov.2006.

AmericanDiabetesAssociation,‘‘Economiccostsofdiabetesinthe U.S. in 2017,’’ Diabetes Care, vol. 41, no. 5, pp. 917–928, 2018, doi:10.2337/dci18-0007.

J.M.M.Rumbold,M.O’Kane,N.Philip,andB.K.Pierscionek,‘‘Bigdataanddiabetes:Theapplicationsofbigdatafordiabetescarenowandinthefuture,’’ Diabetic Med., vol. 37, no. 2, pp. 187–193, Feb. 2020.

J. Hippisley-Cox and C. Coupland, ‘‘Development and validation of riskprediction equations to estimate future risk of blindness and lower limbamputationinpatientswithdiabetes:Cohortstudy,’’ BMJ,vol.351,no.1,Nov. 2015, Art. no. h5441.CI.Marzona,F.Avanzini,G.Lucisano,M.Tettamanti,M.Baviera,

A. Nicolucci, and M. C. Roncaglioni, ‘‘Are all people with diabetes andcardiovascular risk factors or microvascular complications at very highrisk? Findings from the risk and prevention study,’’ Acta Diabetolog.,vol. 54, no. 2, pp. 123–131, Feb. 2017.

S.Basu,J.B.Sussman,S.A.Berkowitz,R.A.Hayward,andJ.S.Yudkin,‘‘Developmentandvalidationofriskequationsforcomplicationsoftype2diabetes(RECODe)usingindividualparticipantdatafromrandomisedtri-als,’’LancetDiabetesEndocrinol.,vol.5,no.10,pp.788–798,Oct.2017.

E. B. Schroeder, S. Xu, G. K. Goodrich, G. A. Nichols, P. J. O’Connor,and J. F. Steiner, ‘‘Predicting the 6-month risk of severe hypoglycemiaamongadultswithdiabetes:Developmentandexternalvalidationofapre-dictionmodel,’’J.DiabetesComplications,vol.31,no.7,pp.1158–1163,Jul.2017.

N. Barakat, A. P. Bradley, and M. N. H. Barakat, ‘‘Intelligible supportvector machines for diagnosis of diabetes mellitus,’’ IEEE Trans. Inf.Technol. Biomed., vol. 14, no. 4, pp. 1114–1120, Jul. 2010.

B. Liu, Y. Li, S. Ghosh, Z. Sun, K. Ng, and J. Hu, ‘‘Complication riskprofiling in diabetes care: A Bayesian multi-task and feature relation-ship learning approach,’’ IEEE Trans. Knowl. Data Eng., vol. 32, no. 7, pp.1276–1289,Jul.2020.

A.PavateandN.Ansari,‘‘Riskpredictionofdiseasecomplicationsintype2diabetes patientsusingsoft computingtechniques,’’ in Proc.5th Int. Conf.Adv. Comput. Commun. (ICACC), Sep. 2015, pp. 371–375.

J.Yan,X.Du,Y.Yu,andH.Xu,‘‘Establishmentofriskpredictionmodelfor retinopathyin type 2diabeticpatients,’’ in Proc. Int.Conf. Brain Inform.Haikou, China: Springer, 2019, pp. 233–243.

A.Dagliati,S.Marini,L.Sacchi,G.Cogni,M.Teliti,V.Tibollo,P.D.Cata, L. Chiovato, and R. Bellazzi, ‘‘Machine learning methods to predict dia-betes complications,’’ J. DiabetesSci. Technol., vol. 12, no.2,pp.295–302,Mar.2018.

K. V. Dalakleidi, K. Zarkogianni, V. G. Karamanos, A. C. Thanopoulou,and K. S. Nikita, ‘‘A hybrid genetic algorithm for the selection of thecritical features for risk prediction of cardiovascularcomplicationsintype 2 diabetes patients,’’ in Proc. 13th IEEE Int. Conf. Bioinf. BioEng.,Nov. 2013, pp. 1–4.

R. GargeyaandT.Leng,‘‘Automatedidentificationofdiabeticretinopathyusingdeeplearning,’’Ophthalmology, vol. 124,no.7,pp.962–969,2017.

M.-H.Hsieh,L.-M.Sun,C.-L. Lin,M.-J.Hsieh,K.Sun,C.-Y.Hsu,sA.-K. Chou, and C.-H. Kao, ‘‘Development of a prediction model forcolorectalcanceramongpatientswithtype2diabetesmellitususingadeepneural network,’’ J. Clin. Med., vol. 7, no. 9, p. 277, Sep. 2018.

Y.Cheng,F.Wang,P. Zhang,andJ.Hu,‘‘Riskpredictionwithelectronichealthrecords: Adeeplearningapproach,’’in Proc.SIAMInt.Conf.DataMining, Jun. 2016, pp. 432–440.

D.Masouros,K.Koliogeorgi,G.Zervakis,A.Kosvyra,A.Chytas, S. Xydis, I. Chouvarda, and D. Soudris, ‘‘Co-design implications of cost-effective on-demand acceleration for cloud healthcare analytics: TheAEGLE approach,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.(DATE), Mar. 2019, pp. 622–625.

M. Richmond, Population Pyramids. Corvallis, OR, USA: Oregon StateUniv.,2014.

rChartsbyRamnathVaidyanathan.Accessed:Oct.25,2019.[Online]. Available:https://ramnathv.github.io/rCharts

Highcharts. Accessed: Oct. 25, 2019. [Online]. Available: https://www.highcharts.com/demo/bar-negative-stack.

...

Downloads

Published

2025-05-01

How to Cite

1.
Vennela VS, swamy G, Raju Y, Arjun N. A Data Analytics Suite for Exploratory Predictive, and Visual Analysis of Type 2 Diabetes. J Neonatal Surg [Internet]. 2025May1 [cited 2025Sep.21];14(20S):200-12. Available from: https://jneonatalsurg.com/index.php/jns/article/view/4954