Novel Therapeutic Approaches to Combat Antibiotic-Resistant Bacterial Strains Using Phage Therapy
Keywords:
Bacteriophage therapy, antibiotic resistance, multidrug-resistant bacteria, biofilm disruption, murine model, therapeutic efficacy, public healthAbstract
The rise of antibiotic-resistant bacterial strains poses significant challenges to public health, necessitating innovative therapeutic strategies. This study investigates the efficacy of bacteriophage therapy as an alternative treatment against multidrug-resistant (MDR) strains of Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. Isolated bacteriophages demonstrated high lytic activity, achieving a bacterial reduction of up to 99% at a multiplicity of infection (MOI) of 10. The biofilm disruption capability of phages was also assessed, revealing a reduction in biofilm mass by 70-85%. In vivo experiments in a murine model indicated that phage treatment improved survival rates to 80%, compared to 30% in the antibiotic-treated group and 0% in the untreated group. Moreover, a significant reduction in bacterial load was observed in the organs of phage-treated mice. These findings underscore the therapeutic potential of bacteriophage therapy in managing MDR bacterial infections and highlight its ability to disrupt biofilms effectively. The study concludes that bacteriophages present a promising alternative to traditional antibiotics, potentially addressing the urgent need for new therapeutic approaches in the face of rising antibiotic resistance.
Downloads
Metrics
References
Abdelghafar, A., El-Ganiny, A., Shaker, G., & Askoura, M. (2023). A novel lytic phage exhibiting a remarkable in vivo therapeutic potential and higher antibiofilm activity against Pseudomonas aeruginosa. European Journal of Clinical Microbiology & Infectious Diseases, 42(10), 1207-1234.
Brown-Jaque, M., Calero-Cáceres, W., & Muniesa, M. (2015). Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid, 79, 1-7.
Chan, B. K., Abedon, S. T., & Loc-Carrillo, C. (2013). Phage cocktails and the future of phage therapy. Future microbiology, 8(6), 769-783.
Channabasappa, S., Chikkamadaiah, R., Durgaiah, M., Kumar, S., Ramesh, K., Sreekanthan, A., & Sriram, B. (2018). Efficacy of chimeric ectolysin P128 in drug-resistant Staphylococcus aureus bacteraemia in mice. Journal of Antimicrobial Chemotherapy, 73(12), 3398-3404.
Chegini, Z., Khoshbayan, A., Taati Moghadam, M., Farahani, I., Jazireian, P., & Shariati, A. (2020). Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Annals of clinical microbiology and antimicrobials, 19, 1-17.
Duan, Y., Young, R., & Schnabl, B. (2022). Bacteriophages and their potential for treatment of gastrointestinal diseases. Nature reviews Gastroenterology & hepatology, 19(2), 135-144.
Farooq, T., Hussain, M. D., Shakeel, M. T., Tariqjaveed, M., Aslam, M. N., Naqvi, S. A. H., ... & He, Z. (2022). Deploying viruses against phytobacteria: Potential use of phage cocktails as a multifaceted approach to combat resistant bacterial plant pathogens. Viruses, 14(2), 171-79.
Furfaro LL, Payne MS, Chang BJ. Bacteriophage therapy: clinical trials and regulatory hurdles. Frontiers in cellular and infection microbiology. 2018 Oct 23;8:376-84.
Giardoglou, P., & Beis, D. (2019). On zebrafish disease models and matters of the heart. Biomedicines, 7(1), 15-24.
H⊘ iby, N., Ciofu, O., & Bjarnsholt, T. (2010). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future microbiology, 5(11), 1663-1674.
Hall, T. J., Villapún, V. M., Addison, O., Webber, M. A., Lowther, M., Louth, S. E. T., Mountcastle, S. E., Brunet, M. Y., & Cox, S. C. (2020). A call for action to the biomaterial community to tackle antimicrobial resistance. Biomaterials science, 8(18), 4951–4974. https://doi.org/10.1039/d0bm01160f
Harper, D. R., Parracho, H. M., Walker, J., Sharp, R., Hughes, G., Werthén, M., ... & Morales, S. (2014). Bacteriophages and biofilms. Antibiotics, 3(3), 270-284.
Horianopoulos, L. C., & Kronstad, J. W. (2019). Connecting iron regulation and mitochondrial function in Cryptococcus neoformans. Current opinion in microbiology, 52, 7-13.
Høyland-Kroghsbo, N. M., Mærkedahl, R. B., & Svenningsen, S. L. (2013). A quorum-sensing-induced bacteriophage defense mechanism. MBio, 4(1), 10-1128.
Hron, T., Farkašová, H., Gifford, R. J., Benda, P., Hulva, P., Görföl, T., ... & Elleder, D. (2018). Remnants of an ancient deltaretrovirus in the genomes of horseshoe bats (Rhinolophidae). Viruses, 10(4), 185.
Hwang, Y. J., Choi, H. K., & Kim, S. E. (2019). Bacteriophages in therapeutic applications: Phage therapy strategies. Biomedicines, 7(1), 15. https://doi.org/10.3390/biomedicines7010015
Hyman, P., & Abedon, S. T. (2010). Bacteriophage host range and bacterial resistance. Advances in applied microbiology, 70, 217-248.
Jofre, J., & Muniesa, M. (2020). Bacteriophage isolation and characterization: phages of Escherichia coli. Horizontal Gene Transfer: Methods and Protocols, 61-79.
Kirkpatrick, C. L., Lesouhaitier, O., Malone, J. G., An, S. Q., & Caly, D. L. (2017). Interaction and signalling networks: a report from the fourth 'Young Microbiologists Symposium on Microbe Signalling, Organisation and Pathogenesis'. Microbiology (Reading, England), 163(1), 4–8. https://doi.org/10.1099/mic.0.000401.
Kvachadze, L., Atsiskhashvili, M., & Tediashvili, M. (2011). Phage therapy for human infections in the Republic of Georgia: A comprehensive overview. Clinical Infectious Diseases, 52(6), 120-130. https://doi.org/10.1093/cid/cir053
Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance mechanisms. Nature Reviews Microbiology, 8(5), 317-327.
Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., Kariuki, S., … Cars, O. (2013). Antibiotic resistance-the need for global solutions. The Lancet. Infectious diseases, 13(12), 1057–1098. https://doi.org/10.1016/S1473-3099(13)70318-9
Lu, T. K., & Koeris, M. S. (2011). The next generation of bacteriophage therapy. Current opinion in microbiology, 14(5), 524-531.
Mackenzie, J. S., Jeggo, M., Daszak, P., & Richt, J. A. (Eds.). (2013). One Health: The human-animal-environment interfaces in emerging infectious diseases (Vol. 366). Berlin: Springer. pp- 35-56.
Meier, K. L., & Gitterman, S. (2011). Drug–Device Trials for Infectious Diseases: CDRH Perspective. Clinical infectious diseases, 52(suppl_4), S367-S372.
Oechslin, F. (2018). Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses, 10(7), 351.
Pětrošová, H., Eshghi, A., Anjum, Z., Zlotnikov, N., Cameron, C. E., & Moriarty, T. J. (2017). Diet-induced obesity does not alter Tigecycline treatment efficacy in murine Lyme disease. Frontiers in Microbiology, 8, 292.
Pires, D. P., Vilas Boas, D., Sillankorva, S., & Azeredo, J. (2015). Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. Journal of virology, 89(15), 7449-7456.
Schooley, R. T., Biswas, B., Gill, J. J., Hernandez-Morales, A., Lancaster, J., Lessor, L., Barr, J. J., Reed, S. L., Rohwer, F., Benler, S., Segall, A. M., Taplitz, R., Smith, D. M., Kerr, K., Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M. D., Strathdee, S. A., Benson, C. A., … Hamilton, T. (2017). Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrobial agents and chemotherapy, 61(10), e00954-17. https://doi.org/10.1128/AAC.00954-17
Torres-Barceló, C. (2018). The role of bacteriophages in the evolution of antibiotic resistance. Nature Reviews Microbiology, 16(1), 49-65. https://doi.org/10.1038/nrm.2017.140
Torres-Barceló, C., & Hochberg, M. E. (2016). Evolutionary rationale for phages as complements of antibiotics. Trends in microbiology, 24(4), 249-256.
Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226-235.
Wolcott, R. D., Rhoads, D. D., & Dowd, S. E. (2008). Biofilms and chronic wound inflammation. Journal of wound care, 17(8), 333-341.
World Health Organization (2020). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.