Disease Prediction using Gene Data Over Data Mining and Artificial Intelligence Techniques: A Survey

Authors

  • Paparayudu. nagara
  • D. Ramesh

Keywords:

Gene data, accuracy, machine learning, healthcare, disease prediction

Abstract

Medical research has investigated Disease Prediction (DP) based on Gene data to a key level today, where the DP is attained by using Data Mining (DM) and Artificial Intelligence (AI) to detect disease-related genes. The traditional methods, such as Genome-Wide Association Studies (GWAS) and Linkage Analysis (LA), typically generate several positional candidate genes; experimental validation is cost-effective and in a time frame. Once Gene Prioritization (GP) methods have been included in computational means such as Feature Selection (FS), clustering, and Machine Learning (ML), GP has been significantly enhanced. Using Deep Learning (DL), Support Vector Machines (SVM), or ensemble classifiers, AI supports the improvement of predicting accuracy based on the learning of fine-grain patterns from genomic datasets. Network-based methods such as protein-protein interaction (PPI) networks and gene ontology (GO) analysis help us to recognize disease-gene predictions (DGP). Next Generation Sequencing (NGS) presents massive genomic data subject to efficient pre-processing and dimensionality reduction methods to mitigate high-dimensionality problems. The DL is used to retrieve the hidden relationships in genomic databases that, in turn, help toward the early disease diagnosis. The developments in integrating heterogeneous genomic data and dealing with biases in training datasets have not yet been attained. This analysis classifies computational tools for gene DP in terms of conceptual model rather than technical method and presents recent works in AI-based genomic research proof towards precision medicine and personal healthcare.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ramakrishnan, R., Mohammed, M. A., Mohammed, M. A., Mohammed, V. A., Logeshwaran, J., & Maheswaran, S. (2023, July). An innovation prediction of DNA damage of melanoma skin cancer patients using deep learning. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.

Guo, R., Tian, X., Lin, H., McKenna, S., Li, H. D., Guo, F., & Liu, J. (2023). Graph-based fusion of imaging, genetic, and clinical data for degenerative disease diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

Barnett, E. J., Onete, D. G., Salekin, A., & Faraone, S. V. (2023). Genomic machine learning meta-regression: insights on associations of study features with reported model performance. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

Sheng, N., Huang, L., Gao, L., Cao, Y., Xie, X., & Wang, Y. (2023). A survey of computational methods and databases for lncRNA-miRNA interaction prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(5), 2810-2826.

Khalsan, M., Mu, M., Al-Shamery, E. S., Ajit, S., Machado, L. R., & Agyeman, M. O. (2023). A novel fuzzy classifier model for cancer classification using gene expression data. IEEE Access, 11, 115161-115178.

Sethi, B. K., Singh, D., Rout, S. K., & Panda, S. K. (2023). Long Short-Term Memory-Deep Belief Network based Gene Expression Data Analysis for Prostate Cancer Detection and Classification. IEEE Access.

Al Reshan, M. S., Amin, S., Zeb, M. A., Sulaiman, A., Alshahrani, H., & Shaikh, A. (2023). A robust heart disease prediction system using hybrid deep neural networks. IEEE Access.

Sudhakar, S., Abolfazl, M., Surbhi, B., Saranya, S. S., Meshal, A., Shakila, B., Subramaniyaswamy, V., (2022), Echocardiographic Image Segmentation For Diagnosing Fetal Cardiac Rhabdomyoma During Pregnancy Using Deep Learning, IEEE Access, DOI:10.1109/ACCESS.2022.3215973.

Saheed, Y. K., Balogun, B. F., Odunayo, B. J., & Abdulsalam, M. (2023). Microarray gene expression data classification via Wilcoxon sign rank sum and novel Grey Wolf optimized ensemble learning models. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(6), 3575-3587.

Khater, T., Ansari, S., Alatrany, A. S., Alaskar, H., Mahmoud, S., Turky, A. & Hussain, A. (2024). Explainable Machine Learning Model for Alzheimer Detection Using Genetic Data: A Genome-Wide Association Study Approach. IEEE Access.

Mahesh, T. R., Santhakumar, D., Balajee, A., Shreenidhi, H. S., Kumar, V. V., & Annand, J. R. (2024). Hybrid ant lion mutated ant colony optimizer technique with particle swarm optimization for leukemia prediction using microarray gene data. IEEE Access.

Asir Chandra Shinoo, R. V., Sudhakar, S., (2024), Edge computing-based ensemble learning model for health care decision systems, Sci Rep 14, 26997. https://doi.org/10.1038/s41598-024-78225-5.

Asir Chandra Shinoo R. V., Sudhakar, S., (2024), Effective clinical decision support implementation using a multi-filter and wrapper optimisation model for Internet of Things based healthcare data. Sci Rep 14, 21820. https://doi.org/10.1038/s41598-024-71726-3

Munir, M. A., Shah, R. A., Ali, M., Laghari, A. A., Almadhor, A., & Gadekallu, T. R. (2024). Enhancing Gene Mutation Prediction with Sparse Regularized Autoencoders in Lung Cancer Radiomics Analysis. IEEE Access.

Lee, M., Park, T., Shin, J. Y., & Park, M. (2024). A comprehensive multi-task deep learning approach for predicting metabolic syndrome with genetic, nutritional, and clinical data. Scientific Reports, 14(1), 17851.

Babichev, S., Liakh, I., & Kalinina, I. (2024). Applying the deep learning techniques to solve classification tasks using gene expression data. IEEE Access.

Das, A., Neelima, N., Deepa, K., & Özer, T. (2024). Gene selection-based cancer classification with adaptive optimization using deep learning architecture. IEEE Access.

Eman S. S., Salah, E., Fathi E. Abd El-S., Walid, E., Nirmeen, A. E. B., Ghada, E. B., Naglaa, F. S., Sudhakar, S., Rabie, A. R., (2022), Sketch-Based Retrieval Approach Using Artificial Intelligence Algorithms for Deep Vision Feature Extraction, MDPI-Axioms, 11 (12), 663; DOI:10.3390/axioms11120663.

Sudhakar, S., Abolfazl, M., Julian L., W., Ali, B., Ahlam, A., Meshal, A., Ali, A., Surbhi Bhatia, K., (2023), Improved LSTM-Based Anomaly Detection Model with Cybertwin Deep Learning to Detect Cutting-Edge Cybersecurity Attacks, Human-centric Computing and Information Sciences, 13(55). https://doi.org/10.22967/HCIS.2023.13.055

Kim, J., Wang, K., Weng, C., & Liu, C. (2024). Assessing the utility of large language models for phenotype-driven gene prioritization in the diagnosis of rare genetic disease. The American Journal of Human Genetics, 111(10), 2190-2202.

Surbhi, B., Mohammed, A., Sudhakar, S., Pankaj, D., (2022), An efficient modular framework for automatic LIONC classification of MedIMG using unified medical language, Frontiers in Public Health, DOI:10.3389/fpubh.2022.926229.

Priyadarsini, S., Carlos Andrés Tavera, R., Abolfazl, M., Vidya Sagar, P., Sudhakar, S., (2022) Automatic Liver Tumor Segmentation in CT Modalities Using MAT-ACM, Computer Systems Science and Engineering, 43(3), 1057–1068, DOI:10.32604/csse.2022.024788.

Priyadarsini, S., Carlos Andrés Tavera, R., Mrunalini, M., Ganga Rama Koteswara, R., Sudhakar, S., (2022), Classification of Liver Tumors from Computed Tomography Using NRSVM, Intelligent Automation & Soft Computing, 33(3), 2022, 1517-1530, DOI:10.32604/iasc.2022.024786.

Abolfazl, M., Arokia Jesu Prabhu, L., Julian, W., Dilip Kumar, S., Santhosh, J., Kousalya, K., Pallavi, S., Regin, R., Sharnil, P., Sudhakar S. (2021), Fetal health classification from cardiotocographic data using machine learning, Expert Systems, DOI:10.1111/exsy.12899.

Stalin David, D., Arun Mozhi Selvi, S., Sivaprakash, S., Vishnu Raja, P., Dilip Kumar, S., Pankaj, D., Sudhakar, S., (2022), Enhanced Detection of Glaucoma on Ensemble Convolutional Neural Network for Clinical Informatics, Computers, Materials & Continua, 70 (2), 2563-2579.

Razia, S., Abdul, K., Anil Gandhudi, R., Regin, R., Roy, S., Dilip Kumar, S., Mukesh Kumar, G., Hitesh, J., Ankit, K., Haritha, H., Sudhakar, S. (2021), Multilabel land cover aerial image classification using convolutional neural networks, Arabian Journal of Geosciences, 14 (1681).

Muthumayil, K., Karuppathal, R., Jayasankar, T., Aruna Devi, B., Prakash, N., Sudhakar, S. (2021). A Big Data Analytical Approach for Prediction of Cancer Using Modified K-Nearest Neighbour Algorithm, Journal of Medical Imaging and Health Informatics, (8), 2120-2125 (6), DOI:10.1166/jmihi.2021.3737.

Sudhakar, S., Kailash, K., Subramaniyaswamy, V., Logesh, R. (2021), Cost-effective and efficient 3D human model creation and re-identification application for human digital twins, Multimedia Tools and Applications, 10.1007/s11042-021-10842-y.

Sengan, S., Priya, V., Syed Musthafa, A., Ravi, L., Palani, S., Subramaniyaswamy, V. (2020), A fuzzy-based high-resolution multi-view deep CNN for breast cancer diagnosis through SVM classifier on visual analysis, Journal of Intelligent & Fuzzy Systems, 1-14, DOI:10.3233/JIFS- 189174.

Sengan, S., Arokia Jesu Prabhu, L., Ramachandran, V., Priya, V., Ravi, L., Subramaniyaswamy, V. (2020), Images super-resolution by optimal deep AlexNet architecture for medical application: A novel DOCALN, Journal of Intelligent & Fuzzy Systems, 1-14, DOI:10.3233/JIFS-189146.

Shaymaa Hussein, N., Sudhakar, S., Joel Sunny, D., Serwes, B., Saravanan, V., Veeramallu, B. (2025), The Diagnosis of Heart Attacks: Ensemble Models of Data and Accurate Risk Factor Analysis Based on Machine Learning, Journal of Machine and Computing, 5(1), 589-599.

Narender M, Karrar S. Mohsin, Ragunthar T, Anusha Papasani, Firas Tayseer Ayasrah and Anjaneyulu Naik R (2024), Machine Learning for Genomic Expression Classification-Based Phenotype Prediction in Topological Data Analysis, Journal of Machine and Computing 4(4) (2024)

..

Downloads

Published

2025-04-25

How to Cite

1.
nagara P, D. Ramesh DR. Disease Prediction using Gene Data Over Data Mining and Artificial Intelligence Techniques: A Survey. J Neonatal Surg [Internet]. 2025Apr.25 [cited 2025Oct.12];14(17S):861-7. Available from: https://jneonatalsurg.com/index.php/jns/article/view/4657