Computational Approaches for Identifying Natural Multi-Target Drugs in Cancer Therapy- A Review Article

Authors

  • Kais Atwan Sherif Algailany
  • N. Dora Babu
  • Hamid Ghaffoori Hasan

Keywords:

Computational drug, multi-target drug development, Cancer treatment, Natural compounds in drug discovery

Abstract

A new phase in drug discovery is essential. The majority of pharmaceutical development approaches rely on computer-generated data and insights. This article emphasizes advanced simulation techniques utilized in drug development. By the year 2040, the global incidence of cancer is expected to reach 30 million new cases, with the most significant increase occurring in low- and middle-income countries. Cancer diagnoses in the Americas are projected to rise by 55 percent, totaling 6.23 million cases by 2040. It is crucial to explore the kinetic profiles of ligand binding mechanisms and drug-target affinities. The review encompassed publications from August 2009 to August 2024 to incorporate both foundational and contemporary studies. Results & Discussion: Plant-derived pharmaceuticals encompass methyl transferase inhibitors, DNA damage inhibitors, HDAC inhibitors, and mitotic disruptors, focusing on their anticancer efficacy and development in clinical trials. Methyl transferase inhibitors (MTAs) are currently employed in cancer diagnostics as they target specific driver genes. However, this approach is limited by the extensive genetic alterations present in multiple driver genes within each tumor. The digital drug assignment (DDA) method prioritizes potential therapeutic candidates

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Malnic, B., Hirono, J., Sato, T. & Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96(5), 713-723.

Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer, 127(12), 2893-2917.

World Health Organization (WHO). (2020). Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019. World Health Organization.

Tschandl P, Rinner C, Apalla Z, Argenziano G, Codella N, Halpern A, et al. Human–computer collaboration for skin cancer recognition. Nat Med. 2020 Aug;26(8):1229–34.

Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer. 2019 Sep 1;119:11–7.

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb;542(7639):115–8.

Kim H, Goo JM, Lee KH, Kim YT, Park CM. Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas. Radiology. 2020 Jul;296(1):216–24.

Geras KJ, Mann RM, Moy L. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Radiology. 2019 Nov;293(2):246–59.

Hu L, Bell D, Antani S, Xue Z, Yu K, Horning MP, et al. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. JNCI J Natl Cancer Inst. 2019 Sep 1;111(9):923–32.

Liu, Q., Lim, S. Y., Soo, R. A., Park, M. K., & Shin, Y. (2015). A rapid MZI-IDA sensor system for EGFR mutation testing in non-small cell lung cancer (NSCLC). Biosensors and Bioelectronics, 74, 865-871.

Bayley, J. P., & Devilee, P. (2010). Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree?. Current opinion in genetics & development, 20(3), 324-329.

Cornblatt, B. S., Ye, L., Dinkova-Kostova, A. T., Erb, M., Fahey, J. W., Singh, N. K., ... & Visvanathan, K. (2007). Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 28(7), 1485-1490.

Amin, A., Gali-Muhtasib, H., Ocker, M., & Schneider-Stock, R. (2009). Overview of major classes of plant-derived anticancer drugs. International journal of biomedical science: IJBS, 5(1), 1.

Shah, U.,Shah, R., Acharya, S., & Acharya, N. (2013). Novel anticancer agents from plant sources. Chinese journal of natural medicines, 11(1), 16-23.

Phillipson, J. D. (1997). Medicinal plants. Journal of Biological Education, 31(2), 109-115.

Purabi saha, Kajal mishra,Rajni Bala,Roshan Kumar*,Shivam Kumar.A Comprehenshive Review on Paclitaxel and its Envolving role in the Management of Ovarian Cancer.International Journal Research and Analytical Review.2020;7(3)430-442.

Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253-265.

Khazir, J., Mir, B. A., Pilcher, L., & Riley, D. L. (2014). Role of plants in anticancer drug discovery. Phytochemistry Letters, 7, 173-181.

Solowey, E., Lichtenstein, M., Sallon, S., Paavilainen, H., Solowey, E., & Lorberboum-Galski, H. (2014). Evaluating medicinal plants for anticancer activity. The Scientific World Journal, 2014.

Bhatnagar, P., Pant, A. B., Shukla, Y., Chaudhari, B., Kumar, P., & Gupta, K. C. (2015). Bromelain nanoparticles protect against 7, 12-dimethylbenz [a] anthracene induced skin carcinogenesis in mouse model. European Journal of Pharmaceutics and Biopharmaceutics, 91, 35-46.

Zschocke, S., Rabe, T., Taylor, J. L., Jäger, A. K., & Van Staden, J. (2000). Plant part substitution–a way to conserve endangered medicinal plants?. Journal of ethnopharmacology, 71(1-2), 281-292.

Stagos, D., Amoutzias, G. D., Matakos, A., Spyrou, A., Tsatsakis, A. M., & Kouretas, D. (2012). Chemoprevention of liver cancer by plant polyphenols. Food and Chemical Toxicology, 50(6), 2155-2170.

Zajicek G (2001) Cancer and metaphysics. Med Hypotheses 57: 243-248.

Starwyn D (2012) The Psycho-Emotional Roots of Cancer. Accupuncture Today Vol13

Kearney KG, Richard EH (2017) Self-compassion and breast cancer in 23 cancer respondents: Is the way you relate to yourself a factor in disease onset and progress. Psychology 8: 14-26.

Rahnama M, Fhi Khoshkn M , Maddah SSB , Ahmadi F (2012) Iranian cancer patients’ perception of spirituality: A qualitative content analysis study. BMC Nursing 11: 19.

Chauhan A, Semwal D K, Mishra S.P , Semwal RB (2017) Ayurvedic concept of Shatkriyakala: A traditional knowledge of cancer pathogenesis and therapy. J Integr Med 15: 88-94

Haber, D. A., & Settleman, J. (2007). Drivers and passengers. Nature, 446(7132), 145-146.

DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell metabolism, 7(1), 11-20.

McFarland, C. D. Mirny, L. A. & Korolev, K. S. (2014). Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proceedings of the National Academy of Sciences, 111(42), 15138-15143.

Stratton, M. R., Campbell, P. J.& Futreal, P. A. (2009).The cancer genome. Nature, 458(7239), 719-724.

Salichos, L., Meyerson, W., Warrell, J., & Gerstein, M. (2020). Estimating growth patterns and driver effects in tumor evolution from individual samples. Nature communications, 11(1), 1-14.

Kumar, S., & Gerstein, M. (2017). Less is more in the hunt for driver mutations. Nature, 547(7661), 40-41.

Tinkle, S., McNeil, S. E., Mühlebach, S., Bawa, R., Borchard, G., Barenholz, Y.& Desai, N. (2014). Nanomedicines: addressing the scientific and regulatory gap. Annals of the New York Academy of Sciences, 1313(1), 35-56.

Albanese, A., Tang, P. S., & Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual review of biomedical engineering, 14, 1-16.

Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986;31(3):288–305. doi: 10.1016/0026-2862(86)90018-X

Bregoli, L., Movia, D., Gavigan-Imedio, J. D., Lysaght, J., Reynolds, J., & Prina-Mello, A. (2016). Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine: Nanotechnology, Biology and Medicine, 12(1), 81-103.

Kim, E. M., & Jeong, H. J. (2017). Current status and future direction of nanomedicine: focus on advanced biological and medical applications. Nuclear medicine and molecular imaging, 51(2), 106-117.

Magalhaes L.G., Ferreira L.L.G., Andricopulo A.D. Recent Advances and Perspectives in Cancer Drug Design. An. Acad. Bras. Ciências. 2018;90:1233–1250. doi: 10.1590/0001-3765201820170823. [DOI] [PubMed] [Google Scholar]

Kaleem M., Perwaiz M., Nur S.M., Abdulrahman A.O., Ahmad W., Al-Abbasi F.A., Kumar V., Kamal M.A., Anwar F. Epigenetics of Triple-Negative Breast Cancer via Natural Compounds. Curr. Med. Chem. 2021;29:1436–1458. doi: 10.2174/0929867328666210707165530. [DOI] [PubMed] [Google Scholar]

Karn V., Sandhya S., Hsu W., Parashar D., Singh H.N., Jha N.K., Gupta S., Dubey N.K., Kumar S. CRISPR/Cas9 System in Breast Cancer Therapy: Advancement, Limitations and Future Scope. Cancer Cell Int. 2022;22:234. doi: 10.1186/s12935-022-02654-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Alhosin M., Sharif T., Mousli M., Etienne-Selloum N., Fuhrmann G., Schini-Kerth V.B., Bronner C. Down-Regulation of UHRF1, Associated with Re-Expression of Tumor Suppressor Genes, Is a Common Feature of Natural Compounds Exhibiting Anti-Cancer Properties. J. Exp. Clin. Cancer Res. 2011;30:41. doi: 10.1186/1756-9966-30-41. [DOI] [PMC free article] [PubMed] [Google Scholar]

Parvez A., Choudhary F., Mudgal P., Khan R., Qureshi K.A., Aspatwar A., Farooqi H. PD-1 and PD-L1: Architects of Immune Symphony and Immunotherapy Breakthroughs in Cancer Treatment. Front. Immunol. 2023;14:1296341. doi: 10.3389/fimmu.2023.1296341. [DOI] [PMC free article] [PubMed] [Google Scholar]

Chatterjee A., Mambo E., Sidransky D. Mitochondrial DNA Mutations in Human Cancer. Oncogene. 2006;25:4663–4674. doi: 10.1038/sj.onc.1209604. [DOI] [PubMed] [Google Scholar]

Watson I.R., Takahashi K., Futreal P.A., Chin L. Emerging Patterns of Somatic Mutations in Cancer. Nat. Rev. Genet. 2013;14:703–718. doi: 10.1038/nrg3539. [DOI] [PMC free article] [PubMed] [Google Scholar]

Piñeros M., Parkin D.M., Ward K., Chokunonga E., Ervik M., Farrugia H., Gospodarowicz M., O’Sullivan B., Soerjomataram I., Swaminathan R., et al. Essential TNM: A Registry Tool to Reduce Gaps in Cancer Staging Information. Lancet Oncol. 2019;20:e103–e111. doi: 10.1016/S1470-2045(18)30897-0. [DOI] [PubMed] [Google Scholar]

Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A., Bray F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer. 2021;149:778–789. doi: 10.1002/ijc.33588. [DOI] [PubMed] [Google Scholar]

Loud J.T., Murphy J. Cancer Screening and Early Detection in the 21 St Century. Semin. Oncol. Nurs. 2017;33:121–128. doi: 10.1016/j.soncn.2017.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Zugazagoitia J., Guedes C., Ponce S., Ferrer I., Molina-Pinelo S., Paz-Ares L. Current Challenges in Cancer Treatment. Clin. Ther. 2016;38:1551–1566. doi: 10.1016/j.clinthera.2016.03.026. [DOI] [PubMed] [Google Scholar]

Wang D.R., Wu X.L., Sun Y.L. Therapeutic Targets and Biomarkers of Tumor Immunotherapy: Response versus Non-Response. Signal Transduct. Target. Ther. 2022;7:331. doi: 10.1038/s41392-022-01136-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Debela D.T., Muzazu S.G.Y., Heraro K.D., Ndalama M.T., Mesele B.W., Haile D.C., Kitui S.K., Manyazewal T. New Approaches and Procedures for Cancer Treatment: Current Perspectives. SAGE Open Med. 2021;9:20503121211034366. doi: 10.1177/20503121211034366. [DOI] [PMC free article] [PubMed] [Google Scholar]

Tohme S., Simmons R.L., Tsung A. Surgery for Cancer: A Trigger for Metastases. Cancer Res. 2017;77:1548–1552. doi: 10.1158/0008-5472.CAN-16-1536. [DOI] [PMC free article] [PubMed] [Google Scholar]

Tiwari P.K., Ko T.-H., Dubey R., Chouhan M., Tsai L.-W., Singh H.N., Chaubey K.K., Dayal D., Chiang C.-W., Kumar S. CRISPR/Cas9 as a Therapeutic Tool for Triple Negative Breast Cancer: From Bench to Clinics. Front. Mol. Biosci. 2023;10:1214489. doi: 10.3389/fmolb.2023.1214489. [DOI] [PMC free article] [PubMed] [Google Scholar]

Kumar M., Dubey R., Kumar Shukla P., Dayal D., Kumar Chaubey K., Tsai L.-W., Kumar S. Identification of Small Molecule Inhibitors of RAD52 for Breast Cancer Therapy: In Silico Approach. J. Biomol. Struct. Dyn. 2023:1–14. doi: 10.1080/07391102.2023.2220822. [DOI] [PubMed] [Google Scholar]

Baskar R., Lee K.A., Yeo R., Yeoh K.W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci. 2012;9:193. doi: 10.7150/ijms.3635. [DOI] [PMC free article] [PubMed] [Google Scholar]

Salas-Benito D., Pérez-Gracia J.L., Ponz-Sarvisé M., Rodriguez-Ruiz M.E., Martínez-Forero I., Castañón E., López-Picazo J.M., Sanmamed M.F., Melero I. Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discov. 2021;11:1353–1367. doi: 10.1158/2159-8290.CD-20-1312. [DOI] [PubMed] [Google Scholar]

Esfahani K., Roudaia L., Buhlaiga N., Del Rincon S.V., Papneja N., Miller W.H. A Review of Cancer Immunotherapy: From the Past, to the Present, to the Future. Curr. Oncol. 2020;27:87–97. doi: 10.3747/co.27.5223. [DOI] [PMC free article] [PubMed] [Google Scholar]

Choi H.Y., Chang J.-E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int. J. Mol. Sci. 2023;24:13618. doi: 10.3390/ijms241713618. [DOI] [PMC free article] [PubMed] [Google Scholar]

Deli T., Orosz M., Jakab A. Hormone Replacement Therapy in Cancer Survivors—Review of the Literature. Pathol. Oncol. Res. 2020;26:63–78. doi: 10.1007/s12253-018-00569-x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Chu D.-T., Nguyen T.T., Tien N.L.B., Tran D.-K., Jeong J.-H., Anh P.G., Van Thanh V., Truong D.T., Dinh T.C. Recent Progress of Stem Cell Therapy in Cancer Treatment: Molecular Mechanisms and Potential Applications. Cells. 2020;9:563. doi: 10.3390/cells9030563. [DOI] [PMC free article] [PubMed] [Google Scholar]

Tsimberidou A.M., Fountzilas E., Nikanjam M., Kurzrock R. Review of Precision Cancer Medicine: Evolution of the Treatment Paradigm. Cancer Treat. Rev. 2020;86:102019. doi: 10.1016/j.ctrv.2020.102019. [DOI] [PMC free article] [PubMed] [Google Scholar]

Dumanovsky T., Augustin R., Rogers M., Lettang K., Meier D.E., Morrison R.S. The Growth of Palliative Care in U.S. Hospitals: A Status Report. J. Palliat. Med. 2016;19:8–15. doi: 10.1089/jpm.2015.0351. [DOI] [PMC free article] [PubMed] [Google Scholar]

Ma D.-L., Chan D.S.-H., Leung C.-H. Molecular Docking for Virtual Screening of Natural Product Databases. Chem. Sci. 2011;2:1656–1665. doi: 10.1039/C1SC00152C. [DOI] [Google Scholar]

..

Downloads

Published

2025-04-24

How to Cite

1.
Algailany KAS, Babu ND, Hasan HG. Computational Approaches for Identifying Natural Multi-Target Drugs in Cancer Therapy- A Review Article. J Neonatal Surg [Internet]. 2025Apr.24 [cited 2025Jul.17];14(17S):296-310. Available from: https://jneonatalsurg.com/index.php/jns/article/view/4525

Similar Articles

You may also start an advanced similarity search for this article.