Phytochemicals As Nutraceuticals: A Review
DOI:
https://doi.org/10.63682/jns.v14i16S.4333Keywords:
Phytochemicals, Nutraceuticals, Food, Medicine, Antioxidant, HealthAbstract
Nutraceuticals have received good interest due to safety, nutritive and medicinal effects. Such products include dietary supplements to genetically engineered foods, herbal products and processed foods. Plant produces a variety of chemicals known as phytochemicals which maintain or improve health and which can be broadly classified in various categories based on their chemical structure. Foods like grains, fruits, vegetables, beans, and herbs actually contain phytochemicals of nutraceutical importance. Phytochemicals, either alone or in combination, have enormous medicinal potential in prevention and treatment of diseases. It has been noted that many of the phytochemicals of various nutraceuticals are effective on difficult to cure diseases like cancer, diabetes, cardiovascular disorders etc. They play important pharmacological effects in our health and possess medicinal activities as anti-inflammatory, antioxidant, hypolipidemic, anticancer, antidiabetic, immune-modulator etc. In the present study we have summarized thirty-nine different phytochemicals which have the potential to be used as nutraceuticals; namely as functional foods, dietary supplements, etc. We have studied their biological
source, chemical structure, CAS no., mechanism of action, uses, etc. and detailed herein. Thus, this is a compressive review of significant importance for health, medicinal and nutritional fields
Downloads
Metrics
References
Kalra, EK. Nutraceuticals - Definition and Introduction. AAPS PharmSci,2003; 5 (3), 1-2.
Dhan, P.; Gupta, C.; Sharma, G.; Importance of Phytochemicals in Nutraceuticals. J. Chin Med Res, 2012,1(3), 70-78.
Dhan, P.; Kumar, N. Cost Effective Natural Antioxidants. In: Nutrients, Dietary Supplements, and Nutraceuticals. Humana Press,2011, 1, 163–87.
Dhan, P.; Gupta, C.; 2011. Role of phytoestrogens as nutraceuticals in human health, Pharmacologyonline,2011, 1, 510-523.
Kumari, M.; Jain, S.; Singh, J.; Nutraceutical – Medicine of Future. J Glob Biosci,2015, 4(7), 2790-2794.
Sawicka, B H.;Ziarati, P.;Krochmal-Marczak, B.; Skiba, D.; Nutraceuticals in food and pharmacy A Review. Agron Res,2020, 74(4), 7–31.
Lotha R, Sivasubramanian A. Flavonoids Nutraceuticals in Prevention and Treatment of Cancer: A Review. Asian J Pharm Clin Res,2018, 11(1), 1-6.
Prasad, R.; Prasad, SB. A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent.Asian J Pharm Sci,2019 5(S1), 1–20.
Priscilla, DH.; Jayakumar, M.;Thirumurugan, K. Flavanone Naringenin: An effective Antihyperglycemic snd Antihyperlipidemic Nutraceutical Agent on High Fat Diet Fed Streptozotocin Induced Type 2 Diabetic Rats.J Funct Foods,2015, 14, 363–73.
Lugani, Y.;Sooch, S. Xylitol, an Emerging Prebiotic, a Review. Int J Appl Pharm Biol Res, 2017, 2(2), 67–73.
Vladimirov, M.; Nikolic, V.;Stanojevic, L.; Nikolic, L.;Tacic, A. Common Birch (Betula pendula Roth.): Chemical Composition and Biological Activity of Isolates.Adv Technol,2019, 8(1), 65–77.
Moure, A.;Gullon, P.; Dominguez, H.;Parajo, JC. Advances in the Manufacture, Purification and Applications of Xylo-Oligosaccharides as Food Additives and Nutraceuticals. Process Biochem,2006, 41, 1913–1923.
Burns, AJ.;and Rowland, IR. Anti-Carcinogenicity of Probiotics and Prebiotics, Curr Issues IntestMicrobiol, 2000, 1(1), 13-24.
Handore, AV.;and Khandelwal, SR. Resveratrol the Nutraceutical, Whose Real Time has Come: A Systematic Review. Asian J Pharm Clin Res,2017, 8(2), 1516-1544.
Rossi, D.; Guerrini, A.; Bruni, R.;Brognara, E.;Borgatti, M.; Gambari, R.Trans-Resveratrol in Nutraceuticals: Issues in Retail Quality and Effectiveness. Molecules,2012, 17(10), 12393–12405.
Bagul, P.K.;Banerjee, S.K. Application of Resveratrol in Diabetes: Rationale, Strategies and Challenges. Curr Mol Med,2015, 15, 312-330.
Heghes, SC.;Vostinaru, O.;Mogosan, C.;Miere, D.;Iuga, CA.; Filip, L. Safety Profile of Nutraceuticals Rich in Coumarins: An Update.FrontPharmacol,2022, 13, 1-9.
Loncar, M.;Jakovljevic, M.;Subaric, D.;Pavlic, M.;Sluzek, VB.;Cindric, I. Coumarins in Food and Methods of Their Determination. Foods,2020, 9, 645.
Grover, J.;Jachak, SM. Coumarins as Privileged Scaffold for Anti-Inflammatory Drug Development. RSC Advances,2015, 5, 38892–38905.
Wu Y, Xu J, Liu Y, Zeng Y, Wu G. A Review on Anti-Tumor Mechanisms of Coumarins. Front Oncol,2020, 10, 1-11.
Sved, ND.Adbami, M.; Khan, YI.; Hasan, MM. Anticancer Agents in Medicinal Chemistry. Curr Med ChemAnt, 2013, 13(7), 995-1001.
Kimira, M.; Arai, Y.; Shimoi, K.;Watanabe, S.Japanese Intake of Flavonoids and Isoflavonoids from Foods.J Epidermiol,1998, 8, 168–175.
Kashyap, D.; Garg, VK.; Tuli, HS.;Yerer, MB.;Sak, K.; Sharma, AK.; Manoj, K.; Aggarwal, V.; Sandhu, SS. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules, 2019. 9(5), 1-22.
Imran, M.;Saeed, F.; Gilani, S.A.; Shariati, M.A.; Imran, A.;Afzaal, M.; Atif, M.; Tufail, T.; Anjum, F.M. Fisetin: An Anticancer Perspective. Food Sci Nutr., 2020 9(1), 3–16.
Kiruthika, S.; Azhwar, R.; Perumal, EA. Review on the Chemotherapeutic Potential of Fisetin: In-Vitro Evidences. Biomed Pharmacother,2018, 97, 928–940.
Suh, Y.; Afaq, F.; Johnson, J.J.; Mukhtar, H. A Plant Flavonoid Fisetin Induces Apoptosis in Colon Cancer Cells by Inhibition of Cox2 AndWnt/Egfr/Nf-Kappa B-Signaling Pathways, Carcinogenesis, 2009, 30, 300–307.
Ekambaram, P.; Kiruthika, S.; Azhwar, R.; Molecular biopha.Biomed. Pharmacother,2018, 97, 928–940.
Jang, K.Y.; Jeon, S.V.; Kim, S.H.; Jung, J.H.; J.H. Kim, W.; Koh, C.Y.; Chen, S.H.; Kim. Activation of Reactive Oxygen Species/Amp Activated Protein Kinase Signaling Mediates Fisetin-Induced Apoptosis in Multiple Myeloma U266 cells, Cancer Lett, 2012, 319, 197–202.
Li-Ping Guan, Bing-Yu Liu. Antidepressant-like Effects and Mechanisms of Flavonoids and Related Analogues.Eur J Med Chem,2016, 121, 1-42.
Vattem, D.;Shetty, K. Biological Functionality of Ellagic Acid: A Review. Molecular andNutr Health,2005, 29(3), 234-266.
Jos-Luis, Rios.; Rosa, M.; Giner, M.; Marín, M.; Carmen, R. A Pharmacology Update of Ellagic Acid. Planta medica,2018, 84(15), 1068-1093.
Evtyugin, DD.;Magina, S.;Evtuguin, DV. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules,2020, 25(12), 2745.
Nancy, E.M.;Elizabeth, J.J. Closer to Clarity on the Effect of Lipid Consumption on Fat-Soluble Vitamin and Carotenoid Absorption. Am J Clin Nutr,2017, 106, 969-970.
Gun-Ae, Y.;Kyung-Jin, Y.;Yoon-Suk, C.;C-Y Oliver, C.;Guangwen, T.;JeffreyB.B.;Robert, M.R.;Yang Cha, L. Carotenoids and Total Phenolic Contents in Plant Foods Commonly Consumed in Korea. Nutr Res Pract, 2012, 6(6), 481-490.
Alireza, M.;Marzieh, B.;Sepideh, S.;Azam, B. Carotenoids: Biochemistry, Pharmacology and Treatment. Br J Pharmacol,2017, 174(11), 1290-1324.
Grabowska, M.;Wawrzyniak, D.; Rolle, K.;Chomczyński, P.;Oziewicz, S.;Jurga, S. Let Food be Your Medicine: Nutraceutical Properties of Lycopene. Food Funct,2019, 10, 3090–3102.
Hebert, D.;Lv, Q-Y. Overview of Mechanisms of Action of Lycopene. Exp Biol Med,2002, 227(10), 920-923.
Ascenso, A.; Pedrosa, T.;Pinho, S.;Pinho, F.; de Oliveira, JM.; Marques, H. The Effect of Lycopene Pre-exposure on UV-B-Irradiated Human Keratinocytes. Oxid. Med. Cell. Longev. 2016, 1-15.
Madaan, T.; Choudhary, AN.;Gyenwalee, S.; Thomas, S.; Mishra, H.; Tariq, M.Lutein, a versatile phyto-nutraceutical: An Insight on Pharmacology, Therapeutic Indications, Challenges and Recent Advances in Drug Delivery. Pharma Nutr.,2017, 5, 64–75.
Shegokar, R.; Mitri, K. Carotenoid Lutein: A Promising Candidate for Pharmaceutical and Nutraceutical Applications. J Diet Suppl,2012, 9, 183–210.
Roberts, RL. Green, J.; Lewis, B. Lutein and Zeaxanthin in Eye and Skin Health. Clin Dermatol,2009, 27(2), 195–201.
Priscilla, DH.; Jayakumar, M.;Thirumurugan, K. Flavanone Naringenin: an Effective Antihyperglycemic and Antihyperlipidemic Nutraceutical Agent on High Fat Diet Fed Streptozotocin Induced Type 2 Diabetic Rats. J Funct Foods,2015, 14, 363–73.
Wilcox, LJ.;Borradaile, NM.; Huff, MW. Antiatherogenic Properties of Naringenin, a Citrus Flavonoid. J Ethnopharmacol,1999, 17(2), 160–178.
Olsen, HT. Stafford, GI.VanStaden, J.; Christensen, SB.; Jager, AK. Isolation of the Mao-Inhibitor Naringenin from Mentha AquaticaL. J Ethnopharmacol,2008, 117(3), 500–502.
Memariani, Z.; Abbas, SQ.;ul Hassan, SS.; Ahmadi, A.;Chabra, A. Naringin And Naringenin as Anticancer Agents and Adjuvants in Cancer Combination Therapy: Efficacy and Molecular Mechanisms of Action, A Comprehensive Narrative Review. Pharmacol Res Commun,2021, 171, 1-92.
Dallas, C.;Gerbi, A.;Elbez, Y.;Caillard, P.;Zamaria, N.;Cloarec, M. Clinical Study to Assess the Efficacy and Safety of a Citrus Polyphenolic Extract of Red Orange, Grapefruit, and Orange (Sinetrol-Xpur) on Weight Management and Metabolic Parameters in Healthy Overweight Individuals.Pharmacol Res Commun,2014, 28(2), 212–218.
Nahmias, Y.; Goldwasser, J.;Casali, M.; van Poll, D.;Wakita, T.; Chung, RT. Apolipoprotein B-dependent Hepatitis C Virus Secretion is Inhibited by the Grapefruit Flavonoid Naringenin. Hepatology,2008, 47(5), 1437–1445.
Hirai, S.; Kim, YI.;Goto, T.; Kang, MS.; Yoshimura, M.; Obata, A. Inhibitory Effect of Naringenin Chalcone on Inflammatory Changes in the Interaction Between Adipocytes and Macrophages. Life Sci,2007, 81(16), 1272–1279.
Prasad, R.; Prasad, SB. A Review on the Chemistry and Biological Properties of Rutin, a Promising Nutraceutical Agent. Asian J Pharm.Pharmacol,2019, 5(S1), 1–20.
Kreft, I.;Fabjan, N.;Yasumoto, K. Rutin Content in Buckwheat (Fagopyrum esculentum Moench) Food Materials and Products. Food Chem,2006, 98(3), 508–512.
Kite, GC.; Veitch, NC.;Boalch, ME.; Lewis, GP.; Leon, CJ.; Simmonds, MSJ. Flavonol-tetraglycosidesFrom Fruits of Styphnolobium japonicum (Leguminosae) and the Authentication of Fructus Sophorae and FlosSophorae. Phytochemistry,2009, 70(6), 785–94.
Lin, JP.; Yang, JS.; Lin, JJ.; Lai, KC.; Lu, HF.; Ma, CY. Rutin Inhibits Human LeukemiaTumor Growth in a Murine Xenograft Model In-Vivo. Environ Toxicol,2012, 27(8), 480–484.
Singh, M.; Govindarajan, R.; Kumar, S.R. American Fern Society Antimicrobial Flavonoid Rutin from Pteris vittata L. against Pathogenic Gastrointestinal. Am Fern J,2008, 98(2), 98-103.
Semwal, DK.;Semwal, RB.Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities.Nutrients,2016, 8, 90.
Park, KS.; Chong, Y.; Kim, MK. Myricetin: Biological Activity Related to Human Health. Appl Biol Chem,2016, 59, 259–269.
Devi, KP.;Rajavel, T.;Habtemariam, S.;Nabavi, SF.;Nabavi, SM. Molecular Mechanisms Underlying Anticancer Effects ofMyricetin.Life Sci,2015, 142, 19–25.
Heoa, MY.; Sohnb, S.; William, W.Anti-genotoxicity of Galangin as a Cancer Chemopreventive Agent Candidate. Mutat Res,2001, 488, 135–150.
MerveBacanl, A.; Ahmet, B.; Nurşen, B. The Antioxidant, Cytotoxic, And Antigenotoxic Effects of Galangin, Puerarin, and Ursolic Acid in Mammalian Cells. Drug Chem Toxicol,2017, 40(3), 1-9.
Moon, YH.; Su, JS.; William, W Au. Anti-genotoxicity of Galangin as a Cancer Chemopreventive Agent Candidate. Mutat Res,2001, 488, 135–150.
Dengyang, F.; Zuming, X.; Jinming, Xu.; Jun, Y.; Runlan, L.Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed. Pharmacother.,2019, 109, 2054–2061.
Dengyang, F.; Zuming, X.; Jinming, Xu.; Jun, Y.; Runlan, L.ChemopreventiveMechanisms of Galangin Against Hepatocellular Carcinoma: A Review. Biomed. Pharmacother,2019, 109, 2054–2061.
Stompor, GM.; Bajek, BA.; Machaczka, M. Chrysin: Perspectives on Contemporary Status and Future Possibilities as Pro-Health Agent. Nutrients,2021, 13, 2038.
Blasco, C.; Vazquez-Roig, P.; Onghena, M.; Masia, A.; Pico, Y. Analysis of Insecticides in Honey by Liquid Chromatography-Ion Trap-Mass Spectrometry: Comparison of Different Extraction Procedures. J Chromatogr, 2011, 1218(30), 1218.
Mani, R.; Vijayakumar, N. Chrysin: Sources, Beneficial Pharmacological Activities, and Molecular Mechanism of Action. Phytochemisty,2018, 145, 187-196.
Naz, S.; Imran, M.; Rauf, A. Orhan, IE.; Ali, MS.; Iahtisham-Ul-Haq, Shahbaz, M.; Batool, TQ.; Zafar Ali, S. Chrysin: Pharmacological and Therapeutic Properties. Life Sci,2019, 235, 11679.
Zeinali, M.A.; Hosseinzadeh, H. An Overview on Immunoregulatory and Anti-Inflammatory Properties of Chrysin and Flavonoids Substances, Biomed Pharmacother, 2017, 92, 998–1009.
Raza, M.S.; Butt, H.R.Suleria. Jamun (Syzygium cumini) Seed and Fruit Extract Attenuate Hyperglycaemia in Diabetic Rats. Asian Pacific J Trop Biomed, 2017, 8, 15–20.
Wang, J.; Zhang, T.; Du, J.; Cui, S.; Yang, F. Anti-Enterovirus Effects of Chrysin and its Phosphate Ester. PLoS One,2014, 9(3), 1-9.
Seelinger, G.;Merfort, I.;Wolfle, U.; Christoph, M. Anti-carcinogenic Effects of the Flavonoid Luteolin. Molecules, 2008, 13(10), 2628-2651.
Nur, A.; Mi-Yeon, K.; Jae Youl, C. Anti-inflammatory Effects of Luteolin: A Review of In-Vitro, In-Vivo, and In-Silico Studies. J Ethnopharmacol,2018, 225, 1-17.
Shimoi, K.; Okada, H.; Furugori, M.; Goda, T.; Takase, S.; Suzuki, M.; Hara, Y.; Yamamoto, H.; Kinae, N. Intestinal Absorption of Luteolin and Luteolin 7-O-Β-Glucoside in Rats and Humans. FEBS letters, 1998, 438(3), 220-224.
Muhammad, I.; Abdur, R.; Tareq, A.; Muhammad, N.; Mohammad, A.; Imtiaz Ali, K.; Ali, I.; Ilkay, E.O.; Muhammad, R.; Tanweer, A.G.; Mohammad, S.M. Luteolin, a Flavonoid, as an Anticancer Agent: A Review. Biomed Pharmacother,2019,112, 1-10.
Miguel, L. Distribution and Biological Activities of the Flavonoid Luteolin. Curr Med Chem,2009, 9, 31-59.
Jain, R.; Tiwari, A. Monograph: Luteolin. Matrix Science Medica. Biotech,2020, 4(3), 88-89.
Noor, I.T.; Khozirah, S.; Faridah, A.; Ghulam, K.A.; Zamzuri, I.; UmiSalamah, R. Characterization of Apigenin and Luteolin Derivatives from Oil Palm. J Agric Food Chem,2012, 60, 11201−1121.
Tuorkey.; Muobarak, J. Molecular Targets of Luteolin in Cancer. Eur J Cancer Prev,2016, 25(1), 65-76.
Gunter, S.; Irmgard, M.; Ute, W.; Christoph, M. Anti- carcinogenic Effects of the Flavonoid Luteolin Medical and Pharmaceutical Services, Berlin, DE mol,2008, 13, 2628-2651.
Günter, S.; Irmgard, M.; Christoph, M. Anti-Oxidant, Anti-Inflammatory and Anti-Allergic Activities of Luteolin. Planta Med,2008, 74, 1667– 1677.
Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A Review of In-Vitro and In-Vivo Studies. Biomed Pharmacother,2015, 76, 30–38.
Richard, A.; Daneel, F. Molecules of Interest Genistein. Phytochem,2002, 60(3), 205–211.
Messina, M.; Nagata, C.; Anna, HW. Estimated Asian Adult Soy Protein and Isoflavone Intakes. Nutr Cancer,2006, 55, 1–12.
Markovits, J.; Linassier, C.; Fosse, P. Inhibitory Effects of the Tyrosine Kinase Inhibitor Genistein on Mammalian DNA Topoisomerase II. Cancer Res, 1989, 49, 5111–5117.
Neha, J.; Juber, A.; Satya, P.S.; Badruddeen, F. An Overview on Genistein and its Various Formulations. Drug Res,2019, 69(6),305-313.
Hemati, I.M.; Moradi, S.; Mollica, A.; Mohammad, A. Effects of Genistein on Blood Pressure: A Systematic Review and Meta-Analysis. Food Res,2020, 1-29.
Mazumder, A.R.; Parichat, H. Genistein as Antioxidant and Antibrowning Agents in Vivo and in Vitro: A Review. Biomed Pharmacother,2016, 82, 380-392.
Halimfanezi, L.; Asra, R. A Review: Analysis of Betacyanin Levels in Various Natural Products. Asian J pharma Res Dev, 2020, 8(5), 88-95.
Xiyu, Y.; Yan, Q.; Man, Z.; Jixian, Z.; Chunlu, Q.; Jun, L. Development of Active and Smart Packaging Films Based on Starch, Polyvinyl Alcohol and Betacyanins from Different Plant Sources.Asian J Pharm Res Dev,2020, 8(5), 89-95.
Romdona, FS.; Kusumo, E.S. Identification of Betacyanin and Antioxidant Test of Red Dragon Fruit Skin Extract (Hylocereuspolyrhiyus). Indo J Chem.Sci,2017, 6, 1-4.
Kaur, G.; Thawkar, B.; Dubey, S.; Jadhav, P. Pharmacological Potentials of Betalains, J Complement Integr Med,2018, 15, 1-9.
Mayer, K.E.; Myers, R.P.; Lee, S.S. Silymarin Treatment of Viral Hepatitis A Systematic Review, J Hepatol,2005, 12, 559–567.
Polyak, S.J.; Ferenci, P.; Pawlotsky, J.M. Hepatoprotective and Antiviral Functions of Silymarin Components in Hepatitis C Virus Infection. Hepatology, 2013, 57(3), 1262–1271.
Ahmed, A.E.; Yanfang, S.; Winston, N.; Ahmed, M.M. Biotechnological Production of Silymarin in Silybummarianum L.: A review. Biocatal Agric,2020, 29, 1-16.
Maryam, V.; Nafise, A.; Gholamreza, K. Effects of Silymarin on the Metabolic Syndrome; a Review. J Sci Food Agric,2018, 98(13), 4816-4823.
Gang Gong, Y.G.; Zhong-Lin, R. Esorhametin: A Review of Pharmacological Effects. Biomed Pharmacother,2020, 128, 1-25.
Tagha, Ordal. Polyphenols, Bioavailability and Potency Comprehensive Gut Microbiota. Elsevier Sci,2022, 3-19.
Senem, K. Polyphenols, Bioavailability and Potency. Elsevier Sci, 2022, 3-19.
Shuang, Z.; Xin Luan, Z. Isorhamnetin, aReviewof Pharmacological Effects. Biomed Pharmacother, 2020, 128, 1-25.
Chuan-Ming, L.; Xinzhi, Z. Hearing Impairment Associated with Depression in US Adults. NHANES,2014, 140(4), 293-302.
Dr. Manju V. Pharmacologinal Applications of Isorhamnetin. Int j trend res dev,2017, 1(4), 672-678.
Christine, BS.; Agnieszka, L.; Anika, EW.; Anna, S.; Alicja, J.; Jozef, D. Effect of Quercetin and its Metabolites Isorhamnetin and Quercetin-3-Glucuronide on Inflammatory Gene Expression: Role of miR-155. J NutrBiochem,2011, 22, 293-299.
Syed, H.O.Neuroprotective Natural Products for Alzheimer’s. Cells,2018, 10, 103-148.
Ana B.R.; Hryb, M.P.; Cunha, M.P.; Kaster, S. Natural Polyphenols and Terpenoids for Depression Treatment. Stud. Nat Prod Chem,2018, 55, 181-221.
Ravirajsinh, N.J.; Ranjitsinh, V.D. Polyphenols and Flavonoids in Controlling Non-Alcoholic Steatohepatitis. SJG,2014, 165-123.
Yumol, Jenalyn L. Polyphenols: Mechanisms of Action in Human Health and Disease. Elsevier, 2018, Vol. 1, pp. 431–440.
Srinivasan, S.; Murli, R. Antidiabetic Efficacy of Citrus Fruits with Special Allusion to Flavone Glycosides, 2019, pp.335–346.
Aggarwal, V.; Hardeep, S.; Falak, T. Molecular Mechanisms of Action of Hesperidin in Cancer: Recent Trends and Advancements. Exp Biol Med,2020, 245(5), 1-12.
Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of their Molecular Mechanisms and Experimental Models. Phytother Res,2015, 29(3), 323–331.
Zanwar, A.A. Polyphenols in Human Health and Disease Antioxidant Role of Catechin in Health and Disease. Biomed Pharmacother,2014, 108, 267–271.
Lim, W.; Jeong, W.; Song, G. Coumestrol Suppresses Proliferation of ES2 Human Epithelial Ovarian Cancer Cells. J Endocrinol,2015, 228(3), 149-160.
Mun, BG.; Kim, HH.; Yuk, HJ.; Hussain, A.; Loake, GJ.; Yun, BW. A Potential Role of Coumestrol in Soybean Leaf Senescence and Its Interaction with Phytohormones. Front Plant Sci,2021, 12.
Ahmad, KA.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. Protein kinase CK2 - A Key Suppressor of Apoptosis. Adv Enzyme Regul,2008, 48(1), 179–87.
Zafar, A.; Singh, S.; Satija, YK.; Saluja, D.; Naseem, I. Deciphering the Molecular Mechanism Underlying Anticancer Activity of Coumestrol in Triple-Negative Breast Cancer Cells. Toxicol In Vitro,2018, 46, 19–28.
Zafar, A.; Singh, S.; Naseem, I. Cu (II)-Coumestrol Interaction Leads to Ros-Mediated DNA Damage and Cell Death: A Putative Mechanism for Anticancer Activity. J. Nutr. Biochem,2016, 33, 15–27.
Bahare, S.; Laura, M.; Javad, S.; Shahira, M.; Mohamed, A. Rana, M.; Merghany, N.; Oksana, S.; Farukh, S.; Martins, N. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ASC Omega,2020, 5(20) , 11849 -11872.
Alexander, V.; Anand, D.; Radhakrishnanb, A.; Subramani, P. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacoga Rev, 2016, 10(20), 84-89.
Yao, Li.; Jiaying, Y.; Chunyan, H.; Jiaxin, Y.; Shengnan, W.; Hongnan, L.; Yulong Y. Quercetin. Inflammation and Immunity. Nutrients,2016, 8(3), 167-172.
Susanne, A.; Sophie, P.; Rainer, Z.; Nadiya, B.; Bernd, S.; Alfonso, L. Safety Aspects of the Use of Quercetin as A Dietary Supplement. mol nutr food res,2018, 62(1), 1-63.
Ambati, R.; Phang, S.; Gokare, A. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applicati, a Review. Mar Drugs,2014, 7(1), 128-152.
Carolina, P.; Martins, P.; Ana Carolina, S.; Andrea, P. Antioxidant and Anti-Inflammatory Mechanisms of Action of Astaxanthin in Cardiovascular Diseases. Mol Med,2020, 47(1), 37-48.
Davinelli, Michael E. Nielsen, and Giovanni Scapagnini Nutrients. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review,2018, 10(4), 522.
Bae, J.; Kim, N.; Shin, Y.; Kim, SY.; Kim, YJ. Activity of Catechins and Their Applications. Biomeddermatol,2020, 4(1), 4-8.
Waqas, N.; Baba, MA. Nutraceutical Properties of the Green Tea Polyphenols. Int J Food Process Technol,2014, 5-11.
Sharma, V.; Gulati, A.; Ravindranath, SD. Extractability of Tea Catechins as A Function of Manufacture Procedure and Temperature of Infusion. Food Chem,2005, 93(1), 141–148.
Kwak, JH.; Son, JH.; Park, JM.; Lee, JY.; Park, TS. Physiological Activity of Irradiated Green Tea Polyphenol on the Human Skin. Am J Chin Med,2005, 33, 535–546.
Neag, MA.; Mocan, A.; Echeverría, J.; Pop, R.; Bocsan, CI.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front Pharmacol,2018, 9, 1-30.
Dinicolantonio, J.J.; McCarty, M.; Okeefe, J. Astaxanthin Plus Berberine: A Nutraceutical Strategy for Replicating the Benefits of a Metformin/Fibrate Regimen In Metabolic Syndrome. Open Heart,2019, 6, 1-4.
Saeedaraynenajma, S.S. The Berberies Story Berberis Vulgaris in Therapeutics. Pak J Pharm Sci, 2007, 20(1), 83-92.
Etminan, M.; Gill, S.S.; Samii, A. Intake of Vitamin E, Vitamin C, and Carotenoids and the Risk of Parkinson’s disease: A Meta-Analysis. Lancet Neurol, 2015, 4, 362–365.
Marinova, E.K.; Nikolova, D.B.; Popova, D.N.; Gallacher, G.B.; Ivanovska, N.D. Suppression of Experimental Autoimmune Tubulointerstitial Nephritis in Balbrc Mice by Berberine. Int Immunopharmacol,2000, 48, 9–16.
Kostalova, D.; Bukovsky, M.; Koscova, H.; Kardosova, A. Anticomplement Activity of Mahonia AquifoliumBisbenzylisoquinoline Alkaloids and Berberine Extract. CeskaSlov Farm, 2001, 50, 286–289.
Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants, 1998, 1. Allahabad: CSIR publication
Vennerstrom, J.L.; Lovelace, J.K.; Waits, V.B.; Hanson, W.L.; Klayman, D.L. Berberine Derivatives as Antileishmanial Drugs. Antimicrob. Agents Chemother,1990, 34, 918–921.
Chen, Y.; Wang, Y.; Zhang, J.; Sun, C.; Lopez, A. Berberine Improves Glucose Homeostasis in Streptozotocin-Induced Diabetic Rats in Association with Multiple Factors of Insulin Resistance. ISRN Endocrinol,2011, 1–8.
Li, W.L.; Zheng, H.C.; Bukuru, J.; De Kimpe, N. Natural Medicines Used in The Traditional Chinese Medical System for Therapy of Diabetes Mellitus. J Ethnopharmacol,2004, 92, 1–21.
Chunfen, M.; Zhang, J.; Satoshi, N.; Xiaoqiang, T.; XiaoJuan, H.; Junhong, L.; Ming, Y.; Dandan, W.; Hengyi, X. Anti-inflammatory Effect of Berberine in LPS-Stimulated Macrophages and Endotoxin-Shocked Mice. Antioxid redox signal, 2014, 20(4), 574–588.
TorckMPinkas, M. Camptothecin and Derivatives: A New Class of Antitumor Agents. J Pharm Belg, 2007, 51(4), 200-207.
Saneja, A.; Amulya, K. Nanotechnology Based Targeting Strategies for the Delivery of Camptothecin. Sustainable Agriculture Reviews 44,2020, vol.2, pp.243-272.
Kepler, JA.; Wani, MC.; McNaull, JN.; Wall, ME.; Levine, SG. Plant Antitumor Agents: IV, an Approach toward the Synthesis of Camptothecin. J Org Chem,1969, 34(12), 3853-3858.
Vincent, J.; Eric, E. Cancer Therapies Utilizing the Camptothering: A Review of the in Vivo Literature. Mol Pharm,2010, 7(2), 307-349.
Matta,A.; Chauhan, S. Guggulsterone Targets Smokeless Tobacco Induced PI3K/Akt Pathway in Head and Neck Cancer Cells. PLoS One, 2011, 6(2), 14728.
Sosmitha, G.; Dey, P.; Choudhary, H.; Kishore, B. Potential of Guggulsterone, A Farnesoid X Receptor Antagonist, in the Prevention and Treatment of Cancer. Explor Target Antitumor Ther,2020, 1, 313-342.
Rodrigo, J.; Maria de, F.; Morsyleide de, R.; Jorge, Hernan J.; Wilma A. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol. Biotechnol, 2018, 56(2), 139-151.
Hiromi, Y. Biological Function of Acetic Acid–Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats. Crit. Rev. Food Sci Nutr,2016, 56(1), 171-175.
Dhouha, M.; Maria, G. Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. J Microbiol,2013, 53(4), 377–384.
Jidong, S. D-Limonene: Safety and Clinical Applications. Altern Med Rev,2007, 12(3), 259–264.
Anandakumar, P.; Kamaraj, S.; Vanitha, MK. D-limonene: A Multifunctional Compound With Potent Therapeutic Effects. J Food Biochem,2021, 45(1), 13566.
Muneeb, U.; Tahir, M.; Khan, A.; Abdul, L.; Syed, K.; Sumaya, r.; Ali, N.; Mirza, Z.; Sarwat, S. D-limonene Suppresses Doxorubicin-Induced Oxidative Stress and Inflammation Via Repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats.Exp Biol Med,2014, 239(4), 465-76.
Patrizia, A.; Rita, O.; Jean-François, B.; Schulzke, J.; Matilde, U. Oral Administration of D-Limonene Controls Inflammation in Rat Colitis and Displays Anti-Inflammatory Properties as Diet Supplementation in Humans. Life Sci,2013, 92(24-26), 1151-1156.
Angela, M.; Ana, P.J. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. J Anal Methods Chem,2016, 1, 1-16.
Chambery, A.; Eugenia, S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. J Anal Methods Chem,2016, 1-16.
Badalzadeh, R.; Taiaddini, A. Diosgenin-induced Protection against Myocardial Ischemia-Reperfusion Injury Is Mediated by Mitochondrial Kuze Channels in a Rat Model.Perfusion,2015, 30(7), 565-571.
Singh, A.; Hamid, A.; Kumar, A. Maurya, O.; Khan, E.; Kumar, A.; Negi, D. Synthesis of Diosgenin Analogues as Potential Anti-Inflammatory Agents. J. Steroid Biochem. Mol Biol, 2014, 143, 1-11.
Ashengroph, M.; Nahvi, H.; Zarkesh-Esfahani, I.; Momenbeik, F. Pseudomonas Resinovorans, a Newly Isolated Strain with Potential of Transforming Eugenol to Vanillin and Vanillic Acid. New Biotechnol,2011, 28(6), 656-664.
Fitzgerald, DJ. Mode of Antimicrobial Action of Vanillin Against Escherichia Coli, Lactobacillus Plantarumand Listeria InnocuaJ Appl Microbiol,2004, 97(1), 104-113.
Mi Eun, K.; Ju Yong, N.; Yong-Duk, P.; Lee, J. Anti-Neuroinflammatory Effects of Vanillin Through the Regulation of Inflammatory Factors and NF-κB Signaling in LPS-Stimulated Microglia. Appl Biochem Biotechnol,2019, 187(3), 884-893.
Martin, CH.; Ifeani, D.; Alan, J. Allicin: Chemistry and Biological Properties. Molecules, 2014, 19(8), 12591-12618.
Bahare., S.; PaoloZucc, I.; Erdogan, O. Allicin and Health: A Comprehensive Review. Trends Food Sci Technol, 2019, 1-62.
Ireri Alejandra, C.; Valenzuela, R. Biological Macromolecules as Nutraceuticals, Biological Macromolecule, 2022, 97-138.
KunigkelzxawaMotonaka Kuroda, Human-Environment Interactions Test, Comprehensive Natural Products II. 2010, 4, 631-671.
Maru, GB.; Tajpara, Polyphenol-Mediated In-Vivo Cellular Responses during Carcinogenesis, 2014, 1141- 1179.
Dayu, Y.; Fuchao, X.; Jia, Z.; Jixun, Z. Type III Polyketide Synthases in Natural Product Biosynthesis. Life,2010, 64(4): 285–295.
Fitzpatrick, LR.; Woldemariam, T. Small Molecule Drugs in the Treatment of Inflammatory Bowel Diseases: Which One, When and Why? – ASystematic Review. Eur J Gastroenterol Hepatol,2017, 495-510.
Joy A. Wedert MD. Recaring Abdominal Pain in Paediatrics, 2018, Pages 457-465.
Emilija, V.; Manuel, P. Nicotine and Other Tobacco Compounds in Neurodegenerative and Psychiatric Diseases. 2018, pp.13.
Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review. Evid Based Complement Alternat Med, 2013, 1-12.
Elena, G.; Norberto, P. Pharmacological Induction of Kidney Regeneration. Dokuman Pub., 2017, pp. 1025-1037.
Fahad, A.; Falaq, N.; Yasir, HS. Health Functionality of Apigenin: A Review. Int. J. Food Prop, 2017, 20, (6), 1197-1238.
Patel, D.; Shukla, S.; Gupta, S. Apigenin and Cancer Chemoprevention: Progress, Potential and Promise (Review). Int J Oncol, 2007, 30, 233–246.
Josip, M.; Ivana, V.; Madunic, G. Apigenin: A Dietary Flavonoid with Diverse Anticancer Properties. cancer lett,2018, 4(13), 1-43.
Madunic, J.; Madunic, I.V.; Gajski, G.; Popic, J.V. Apigenin: aDietary Flavonoid with Diverse Anticancer Properties. Cancer Lett,2017, 1-43.
Bahare, S.; Alessandro, V.; Mehdi, S.; Dorota K.; Javad S. The Therapeutic Potential of Apigenin. Mol Sci, 2019, 20, 1305.
Rudan, I.; Sidhu, S.; Papana, A.; Shi-Jiao, M.Y.; Xin Wei Wei, W. Prevalence of Rheumatoid Arthritis in Low–And Middle–Income Countries: A Systematic Review and Analysis. J Glob Health,2015, 1-10.
Mao, X.; Jing, Yu.; Liu, Z.; Zhou, H. Apigenin Attenuates Diabetes-Associated Cognitive Decline in Rats Via Suppressing Oxidative Stress and Nitric Oxide Synthase Pathway. Int J. Clin Exp Med,2015, 8(9), 15506-15513.
Kuhn, A.; Bonsmann, G.; Anders, H.; Herzer, Peter. Tenbrock, K.; Schneider, M. The Diagnosis and Treatment of Systemic Lupus Erythematosus. DtschArztble Int,2015, 112, 423–32.
Kamila, Z.; Agnieszka, D.; Kolodziejczak, A.; Helena, R. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin PharmacolPhysiol, 2018, 31, 332–336.
Kumar, N.; Pruthi, v. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol Rep,2014, 4, 86-93.
Zdunska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin PharmacolPhysiol, 2018, 31(6), 332-336.
Ernst, G. Antioxidant Potential of Ferulic Acid. Free RadicBiol Med, 1992, 13(4), 435-448.
Kahkeshani, N. Pharmacological Effects of Gallic Acid in Health and Diseases: A Mechanistic Review. Iran J Basic Med Sci,2019, 22(3)25-237.
Daglia, M.; Di Lorenzo, A.; Nabavi, SF.; Talas, ZS. Nabavi, SM. Polyphenols: Well Beyond the Antioxidant Capacity: Gallic Acid and Related Compounds as Neuroprotective Agents. Curr Pharm Biotechnol, 2014, 15(4), 362-72.
Verma, S.; Singh, A.; Mishra, A. Gallic acid: Molecular Rival of Cancer. Environ. Toxicol Pharm, 2013, 35(3), 473-485.
Kaio, E.; Roseane, G.F.; Luis Eduardo, M.N.; Amanda, C.R.; Agnes, H.M.; Ana Gabrielle, B.S.; Ana Paula, O.V. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Activity in Hepatocarcinoma. Front Oncol,2019, 9(541), 1-10.
Verma, RP.; Hansch, C. An Approach towards the Quantitative Structure-Activity Relationships of Caffeic Acid and Its Derivatives. Chem Bio Chem,2004, 5, 1188–1195.
Ozturk, G.; Ginis, Z.; Akyol, S.; Erden, G.; Gurel, A.; Akyol, O. The Anticancer Mechanism of Caffeic Acid Phenethyl Ester (Cape): Review of Melanomas, Lung and Prostate Cancers. Eur Rev Med Pharmacol Sci,2012, 16(15), 2064-2068.
Magnani, C.; Borges Isaac, V.L.; Marcos, A.C.; Regina, N. Caffeic acid: A Review of Its Potential Use in Medications and Cosmetics. Anal Methods, 2014, 6(10), 3203-3210.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.