Polymeric Nanoparticles in Oncology: Design, Development and Characterization

Authors

  • Sonali Gurav
  • Anshu Sharma
  • Sunita Shinde
  • Raju Rathod

DOI:

https://doi.org/10.52783/jns.v14.3547

Keywords:

Non-small cell lung cancer, Erlotinib, β-Cyclodextrin, biodegradable nanoparticles, targeted drug delivery, bioavailability, controlled release

Abstract

Non-small cell lung cancer (NSCLC) treatment is often limited by the poor aqueous solubility and systemic side effects of Erlotinib, an EGFR inhibitor. To overcome these challenges, this study explores the use of β-Cyclodextrin (BCD), a natural polymer, for the development of biodegradable polymeric nanoparticles to enhance drug solubility, bioavailability, and therapeutic efficacy. Erlotinib-loaded BCD-based nanoparticles were formulated using High-Pressure Homogenization (HPH) and characterized for particle size, polydispersity index (PDI), zeta potential, drug encapsulation efficiency, and in vitro drug release kinetics. Additionally, their cytotoxicity against NSCLC cell lines, biocompatibility, and pharmacokinetic behavior were evaluated. The optimized formulation (Batch B10) demonstrated high drug encapsulation efficiency, controlled and sustained release, and enhanced solubility due to the inclusion of BCD. The nanoparticles exhibited suitable physicochemical properties for targeted delivery, with improved stability and dissolution behavior. In vivo pharmacokinetic studies confirmed a significant increase in bioavailability, with Batch B10 showing superior systemic absorption compared to pure Erlotinib. The study confirms that BCD, a natural polymer, plays a crucial role in enhancing Erlotinib solubility, bioavailability, and therapeutic effectiveness. The optimized BCD-based nanoparticles offer a promising strategy for improving NSCLC treatment while potentially reducing dose-related side effects.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Dikshit, P.; Kumar, J.; Das, A.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.; Kim, B. Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts 2021, 11, 902.

Liu, Y.; Na Peng, N.; Yao, Y.; Zhang, X.; Peng, X.; Zhao, L.; Wang, J.; Peng, L.; Wang, Z.; Mochizuki, K.; et al. Breaking the nanoparticle’s dispersible limit via rotatable surface ligands. Nat. Commun. 2022, 13, 1–10.

Arami, H.; Teeman, E.; Troksa, A.; Bradshaw, H.; Saatchi, K.; Tomitaka, A.; Gambhir, S.S.; Häfeli, U.O.; Liggitt, D.; Krishnan, K.M. Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nanoscale 2017, 9, 18723–18730.

Moskvin, M.; Babič, M.; Reis, S.; Cruz, M.M.; Ferreira, L.P.; Carvalho, M.D.; Lima, S.A.C.; Horák, D. Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids Surf. B Biointerfaces 2018, 161, 35–41.

Zhang, C.; Yan, Y.; Zou, Q.; Chen, J.; Li, C. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia-Pac. J. Clin. Oncol. 2015, 12, 13–21.

François, A.; Battah, S.; MacRobert, A.J.; Bezdetnaya, L.; Guillemin, F.; D’Hallewin, M.-A. Fluorescence diagnosis of bladder cancer: A novel in vivo approach using 5-aminolevulinic acid (ALA) dendrimers. BJU Int. 2012, 110, E1155–E1162.

Oddone, N.; Lecot, N.; Fernández, M.; Rodriguez-Haralambides, A.; Cabral, P.; Cerecetto, H.; Benech, J.C. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. J. Nanobiotechnol. 2016, 14, 1–12.

Yildiz, T.; Gu, R.; Zauscher, S.; Betancourt, T. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int. J. Nanomed. 2018, ume 13, 6961–6986.

Ekinci, M.; Santos-Oliveira, R.; Ilem-Ozdemir, D. Biodistribution of 99mTc-PLA/PVA/Atezolizumab nanoparticles for non-small cell lung cancer diagnosis. Eur. J. Pharm. Biopharm. 2022, 176, 21–31.

Guo, Y.; Zhang, X.; Wu, F.-G. A graphene oxide-based switch-on fluorescent probe for glutathione detection and cancer diagnosis. J. Colloid Interface Sci. 2018, 530, 511–520.

Ansari, M.T.; Ramlan, T.A.; Jamaluddin, N.N.; Zamri, N.; Salfi, R.; Khan, A.; Sami, F.; Majeed, S.; Hasnain, M.S. Lipid-based Nanocarriers for Cancer and Tumor Treatment. Curr. Pharm. Des. 2020, 26, 4272–4276.

Chattha, G.M.; Arshad, S.; Kamal, Y.; Chattha, M.A.; Asim, M.H.; Raza, S.A.; Mahmood, A.; Manzoor, M.; Dar, U.I.; Arshad, A. Nanorobots: An innovative approach for DNA-based cancer treatment. J. Drug Deliv. Sci. Technol. 2023, 80, 104173.

Arshad, S.; Rehman, M.U.; Asim, M.H.; Mahmood, A.; Ijaz, M.; Alamgeer; Irfan, H.M.; Anwar, F.; Ali, M.Y. Calycosin-loaded nanostructured lipid carriers: In-vitro and in-vivo evaluation for enhanced anti-cancer potential. J. Drug Deliv. Sci. Technol. 2021, 67, 102957.

Li, R.; Ji, Z.; Chang, C.H.; Dunphy, D.R.; Cai, X.; Meng, H.; Zhang, H.; Sun, B.; Wang, X.; Dong, J.; et al. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano. 2014, 8, 1771–1783.

Liu, Y.; Zhang, H.; Cui, H.; Zhang, F.; Zhao, L.; Liu, Y.; Meng, Q. Combined and targeted drugs delivery system for colorectal cancer treatment: Conatumumab decorated, reactive oxygen species sensitive irinotecan prodrug and quercetin co-loaded nanostructured lipid carriers. Drug Deliv. 2022, 29, 342–350.

Fenton, O.S.; Olafson, K.N.; Pillai, P.S.; Mitchell, M.; Langer, R. Advances in Biomaterials for Drug Delivery. Adv. Mater. 2018, 30, e1705328.

Chen, X.; Tong, R.; Shi, Z.; Yang, B.; Liu, H.; Ding, S.; Wang, X.; Lei, Q.; Wu, J.; Fang, W. MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor. ACS Appl. Mater. Interfaces 2018, 10, 2328–2337.

Lv, S.; Wu, Y.; Cai, K.; He, H.; Li, Y.; Lan, M.; Chen, X.; Cheng, J.; Yin, L. High Drug Loading and Sub-Quantitative Loading Efficiency of Polymeric Micelles Driven by Donor–Receptor Coordination Interactions. J. Am. Chem. Soc. 2018, 140, 1235–1238.

Culver, H.R.; Clegg, J.R.; Peppas, N.A. Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery. Acc. Chem. Res. 2017, 50, 170–178.

Wang, H.; Li, M.; Hu, J.; Wang, C.; Xu, S.; Han, C.C. Multiple Targeted Drugs Carrying Biodegradable Membrane Barrier: Anti-Adhesion, Hemostasis, and Anti-Infection. Biomacromolecules 2013, 14, 954–961.

Wu, J.; Zhang, Z.; Gu, J.; Zhou, W.; Liang, X.; Zhou, G.; Han, C.C.; Xu, S.; Liu, Y. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J. Control. Release 2020, 320, 337–346.

Li, X.; He, Y.; Hou, J.; Yang, G.; Zhou, S. A Time-Programmed Release of Dual Drugs from an Implantable Trilayer Structured Fiber Device for Synergistic Treatment of Breast Cancer. Small 2019, 16, 1902262.

Xu, L.; Li, W.; Sadeghi-Soureh, S.; Amirsaadat, S.; Pourpirali, R.; Alijani, S. Dual drug release mechanisms through mesoporous silica nanoparticle/electrospun nanofiber for enhanced anticancer efficiency of curcumin. J. Biomed. Mater. Res. Part A 2021, 110, 316–330.

Sanoff, H.K.; Moon, D.H.; Moore, D.T.; Boles, J.; Bui, C.; Blackstock, W.; O’Neil, B.H.; Subramaniam, S.; McRee, A.J.; Carlson, C.; et al. Phase I/II trial of nano-camptothecin CRLX101 with capecitabine and radiotherapy as neoadjuvant treatment for locally advanced rectal cancer. Nanomed. Nanotechnol. Biol. Med. 2019, 18, 189–195.

Seyedeh-Sara Hashemi, Amir Pakdin, Aliakbar Mohammadi, ACS Appl. Mater. Interfaces 2023, 15, 51, 59269–59279.

Robert Wood and Gavin Taylor-Stokes, Cost burden associated with advanced non-small cell lung cancer in Europe and influence of disease stage (2019) 19–214.10.1186/s12885-019-5428-4.

D.H. Truong, V.K. Hoa Le, T.T. Pham, A.H. Dao, T.P. Dung Pham, T.H. Tran, Delivery of erlotinib for enhanced cancer treatment: An update review on particulate systems, Journal of Drug Delivery Science and Technology (2019), doi: https://doi.org/10.1016/j.jddst.2019.101348.

Parijat Pandey, Kamal Dua, Harish Dureja, ERN loaded chitosan nanoparticles: Formulation, physicochemical characterization and cytotoxic potential. International Journal of Biological Macromolecules, 139 (2019) 13041–316.10.1016/j.ijbiomac.2019.08.084.

Duy Hieu Truong, Vu Khanh Hoa Le, Tung Thanh Pham,Anh Hoang Dao, Thi, Phuong Dung Pham, Tuan Hiep Tran, Delivery of ERN for enhanced cancer treatment: An update review on particulate systems, Journal of Drug delivery Science and Technology. (2020), 31231–6.

Sushant Lakkadwala, Jagdish Singh, Co-delivery of doxorubicin and ERN through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model, Colloids and Surfaces B: Bio Interfaces, (2019) 27–

Sathyaraj Weslen Vedakumaria, Rethinam Senthila, Sathiya Sekard, Chidambaram Saravana Babue. Enhancing anti-cancer activity of ERN by antibody conjugated nanofibrin - In vitro studies on lung adenocarcinoma cell lines, Material chemistry and Physics,224 (2019) 328–333.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018 Nov;68(6):394-424.

Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clinical and translational medicine. 2017 Dec;6:1-21.

Bhuvaneshwar Vaidya, Vineela Parvathaneni, Nishant S. Kulkarni, Snehal K. Shukla, Jenna K. Damon, Apoorva Sarode, Dipti Kanabar, Jerome V . Garcia, Samir Mitragotri, Aaron Muth, Vivek Gupta , Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. International Journal of Biological Macromolecules (2018),https://doi.org/10.1016/j.ijbiomac.2018.10.181.

Shreya Thakkar, Dilip Sharma, Manju Misra, Comparative evaluation of electro-spraying and lyophilization techniques on solid state properties of ERN nanocrystals: Assessment of In-vitro cytotoxicity (2018) 257–269.10.1016/j.ejps.2017.10.008.

Kyung Mi Yang, In Chul Shin, Joo Won Park, Kab-Sig Kim, Dae Kyong Kim, Kyungmoon Park, Nanoparticulation improves bioavailability ofERN (2017) 1557–1565.

G. Paulos A, Yahya Mrestani B, Frank Heyroth C, Tsige Gebre-Mariam A, ,Reinhard H.H. Neubert B, D Fabrication Of Acetylated Dioscorea Starch Nanoparticles: Optimization Of Formulation And Process Variables Journal Of Drug Delivery Science And Technology 31 (2016) Page no. 83-92.

Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European journal of pharmaceutics and biopharmaceutics. 2015 Jun 1;93:52-79.

E. F. Craparo, B. Porsio, M. L. Bond, G. Giammona ,G .Cavallaro, Evaluation Of Biodegradability On PolyaspartamidePolylactic Acid Based Nanoparticles By Chem Hydrolysis Studies. Polymer Degradation and Stability 119 (2015) Page no. 56-67.

Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of controlled release. 2015 Feb 28;200:138-57.

S. Tummala, M. N. Satish Kumar And Ashwati Prakash, Formulation And In Vitro Characterization Of Carbamazepine Polymeric Nanoparticles With Enhanced Solubility And Sustained Release For The Treatment Of Epilepsy, Journal Of Chemical And Pharmaceutical Research, 2015; 7(2): Page no.70-79.

E. F. Craparo, B. Porsio, M. L. Bond, G. Giammona ,G .Cavallaro, Evaluation Of Biodegradability On Polyaspartamide Polylactic Acid Based Nanoparticles By Chem Hydrolysis Studies. Polymer Degradation and Stability 119 (2015) Page no. 56-67.

Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014 Nov-Dec;9(6):385-406.

Y. Liua, C. Suna , Y. Haob, T. Jianga, Li Zhenga, S.Wanga, Mechanism Of Dissolution Enhancement And Bioavailability Of Poorly Water Soluble Celecoxib By Preparing Stable Amorphous Nanoparticles. J Pharm Pharmaceutsci (Www.Cspscanada.Org) 13(4) 2010; Page no. 589 – 606.

Iravani S. Green synthesis of metal nanoparticles using plants. Green chemistry. 2011;13(10):2638-50.

Y. Liua, C. Suna , Y. Haob, T. Jianga, Li Zhenga, S.Wanga, Mechanism Of Dissolution Enhancement And Bioavailability Of Poorly Water Soluble Celecoxib By Preparing Stable Amorphous Nanoparticles. J Pharm Pharmaceutsci (Www.Cspscanada.Org) 13(4) 2010; Page no. 589 – 606.

Korbekandi H, Iravani S, Abbasi S. Production of nanoparticles using organisms. Critical reviews in biotechnology. 2009 Dec 1;29(4):279-306.

Navaladian S, Viswanathan B, Varadarajan TK, Viswanath RP. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation. Nanotechnology. 2008 Jan 4;19(4):045603.

Kim D, Jeong S, Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology. 2006 Jul 14;17(16):4019.

Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society. 2004 Mar 31;126 (12):3868-79.

Becker ML, Bailey LO, Wooley KL. Peptide-derivatized shell-cross-linked nanoparticles. 2. Biocompatibility evaluation. Bioconjugate chemistry. 2004 Jul 21;15(4):710-7.

Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current science. 2003 Jul 25:162-70.

Downloads

Published

2025-04-12

How to Cite

1.
Gurav S, Sharma A, Shinde S, Rathod R. Polymeric Nanoparticles in Oncology: Design, Development and Characterization. J Neonatal Surg [Internet]. 2025Apr.12 [cited 2025Apr.24];14(15S):615-37. Available from: https://jneonatalsurg.com/index.php/jns/article/view/3547