Green Synthesis Of Selenium Nanoparticles Using Leaf Extract Of Mukia Maderasapatana And Deciphering Its Biomedicinal Properties

Authors

  • Philip Gladys Thilagavathy
  • Durairaj Rohini
  • Chandrasekar Shobana
  • Boopathy Usharani
  • Sither Vasantha Kumar

DOI:

https://doi.org/10.52783/jns.v14.3060

Keywords:

Selenium nanoparticles, Mukia maderaspatana, green synthesis, antioxidant, anti-inflammatory, Cytotoxicity

Abstract

Selenium nanoparticles (SeNPs) are tiny particulates, which possess the ability for assimilation by biological systems, and have garnered attraction among researchers due to its exceptional biological properties and potential therapeutic functionalities. In the present study, SeNPs were synthesized via an effective and eco-friendly technique using leaf extract of Mukia maderaspatana. Then SeNPs were characterized by various analytical techniques. UV-Vis spectroscopy showed absorption peak at 265 nm. Biomolecules acts as stabilizers for synthesized SeNPs. Alcoholic group, nitro compounds, aromatic compounds in SeNPs is revealed by the O-H bond, N-O bond and C-C bond by FTIR analysis. SEM analysis showed dimensions of synthesized SeNPs ranging from 73.24 nm to 187.6 nm. EDX analysis highlights the elemental composition of SeNPs as (13.75%) of Selenium, (69.27%) of oxygen and (16.98%) of sodium, and XRD spectroscopy revealed the crystalline structure of SeNPs. The antioxidant potential of SeNPs via in vitro assays like NO, ABTS, FRAP and H2O2 showed higher inhibition as 86.71%, 89.18%, 87.54%, and 89.9% at a concentration of 50 µg/ml. Anti-inflammatory effects of SeNPs demonstrated a noteworthy inhibition of Bovine Serum Albumin, Egg Albumin denaturation as 78% and 77%, also in membrane stabilization with increase in the concentrations of SeNPs it stabilizes the cellular membranes. Brine shrimp lethality assay performed to assess the cytotoxicity effects of SeNPs and recorded the 50% of survival at 80 µg/mL of concentration, and thereby validated its biosafety profile and potential therapeutic index. Collectively, this investigation highlights the multifunctional capabilities of SeNPs as promising candidates for applications in the biomedical field.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ravi, D., Gunasekar, B., Kaliyaperumal, V., & Babu, S. (2024). A recent advances in antimicrobial activity of green synthesized selenium nanoparticle. OpenNano, 20, 100219. https://doi.org/10.1016/j.onano.2024.100219

Sani-E-Zahra, N., Iqbal, M. S., Abbas, K., & Qadir, M. I. (2022). Synthesis, characterization and evaluation of biological properties of selenium nanoparticles from Solanum lycopersicum. Arab. J. Chem, 15(7), 103901. https://doi.org/10.1016/j.arabjc.2022.103901

Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2016). Selenium nanoparticles as a nutritional supplement. Nutrition, 33, 83–90. https://doi.org/10.1016/j.nut.2016.05.001

Yang, X., Fu, Y., Zhang, J., Liu, J., Liu, X., Peng, Y., Kyin, S. L., Zhang, M., & Zhou, D. (2023). Preparation, characterization, and antioxidant and antiapoptotic activities of biosynthesized nano selenium by yak-derived Bacillus cereus and chitosan-encapsulated chemically synthesized nano selenium. Int. J. Biol. Macromol, 242, 124708. https://doi.org/10.1016/j.ijbiomac.2023.124708

Keshtmand, Z., Khademian, E., Jafroodi, P. P., Abtahi, M. S., & Yaraki, M. T. (2023). Green synthesis of selenium nanoparticles using Artemisia chamaemelifolia: toxicity effects through regulation of gene expression for cancer cells and bacteria. N-S&N-O, 36, 101049. https://doi.org/10.1016/j.nanoso.2023.101049

Chanda, S., & Dave, R. (2009). In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview.

Afr. J. Microbiol. Res, 3(13), 981-996.

Vijayakumar, K., Anand, A. V., & Manikandan, R. (2015). In vitro antioxidant activity of ethanolic extract of Psidium guajava leaves. Int J Res Stud Biosci, 3(5), 145-149.

Selvakumar, S., Raj, K. V., Vignesh, S., & Ramani, P. (2018). Invitro anti-inflammatory activity of Kleinia Grandiflora leaves. Materials Today: Proceedings, 5(8), 16539-16542.

Nayal, R., Mejjo, D., & Abajy, M. Y. (2024). Anti inflammatory properties and safety of green synthesized metal and metal oxidenanoparticles: A review article. EJMCR, 100169. https://doi.org/10.1016/j.ejmcr.2024.100169.

Attar, U. A., Ghane, S. G., Chavan, N. S., & Shiragave, P. D. (2022). Simultaneous detection of anticancer compounds (Cucurbitacin I, B and E) and some pharmacological properties of Indian Blastania species. S. Afr. J. Bot, 147, 871–881. https://doi.org/10.1016/j.sajb.2022.03.019

Samad, N., Azdee, M. a. H., Imran, I., Ahmad, T., & Alqahtani, F. (2023). Mitigation of behavioral deficits and cognitive impairment by antioxidant and neuromodulatory potential of Mukia madrespatana in D-galactose treated rats. Saudi J. Biol. Sci, 30(8), 103708. https://doi.org/10.1016/j.sjbs.2023.103708

Kumar, S. V., Shobana, C., Rohini, D., Manjunathan, J., Ramasubburayan, R., Thirumalaivasan, N., Prakash, S., & Usharani, B. (2024). Mukia maderaspatana (L.) M. Roem. phytoconstituents: Unveiling their anticancer potentials against hepatocellular carcinoma cells. S. Afr. J. Bot, 169, 27–37. https://doi.org/10.1016/j.sajb.2024.04.009

Satpathy, S., Panigrahi, L. L., Samal, P., Sahoo, K. K., & Arakha, M. (2024). Biogenic synthesis of selenium nanoparticles from Nyctanthes arbor-tristis L. and evaluation of their antimicrobial, antioxidant and photocatalytic efficacy. Heliyon, 10(12), e32499. https://doi.org/10.1016/j.heliyon.2024.e32499

Olaoye, A. B., Owoeye, S. S., & Nwobegu, J. S. (2024). Facile green synthesis of plant-mediated selenium nanoparticles (SeNPs) using Moringa oleifera leaf and bark extract for targeting α-amylase and α-glucosidase enzymes in diabetes management. Hybrid Advances, 7, 100281. https://doi.org/10.1016/j.hybadv.2024.100281

Krishnamoorthy, K., Jayaraman, S., Krishnamoorthy, R., Manoharadas, S., Alshuniaber, M. A., Vikas, B., & Veeraraghavan, V. P. (2023). Green synthesis and evaluation of anti-microbial, antioxidant, anti-inflammatory, and anti-diabetic activities of silver nanoparticles from Argyreia nervosa leaf extract: An invitro study. J. King Saud Univ. Sci, 35(10), 102955. https://doi.org/10.1016/j.jksus.2023.102955

Rumpf, J., Burger, R., & Schulze, M. (2023). Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International J. Biol. Macromol, 233, 123470. https://doi.org/10.1016/j.ijbiomac.2023.123470

Krishna, K. V., Murugan, J. M., Khan, H., Kumar, M., Veeramanikandan, V., Hatamleh, A. A., Al-Dosary, M. A., Venkatachalam, K., & Balaji, P. (2023). Exploring the therapeutic potential of edible Pleurotus mushroom species for oxidative stress and diabetes management. J. King Saud Univ. Sci, 35(9), 102926. https://doi.org/10.1016/j.jksus.2023.102926

Anokwah, D., Kwatia, E. A., Amponsah, I. K., Jibira, Y., Harley, B. K., Ameyaw, E. O., Obese, E., Biney, R. P., & Mensah, A. Y. (2022). Evaluation of the anti-inflammatory and antioxidant potential of the stem bark extract and some constituents of Aidia genipiflora (DC.) dandy (rubiaceae). Heliyon, 8(8), e10082. https://doi.org/10.1016/j.heliyon.2022.e10082

Magdum, A., Waghmode, R., Shinde, K., Mane, M., Kamble, M., Kamble, R., Jangam, A., Pawar, K., Sonawane, K., Patil, P., & Nimbalkar. (2024). Biogenic synthesis of silver nanoparticles from leaves extract of Decaschistia trilobata an endemic shrub and its application as antioxidant, antibacterial, anti-inflammatory and dye reduction. Catal. Commun, 187, 106865. https://doi.org/10.1016/j.catcom.2024.106865

M, A., Arumugham, M., I., Ramalingam, K., & S, R. (2023). Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of Chitosan Thiocolchicoside-Lauric acid Nanogel. Cureus. https://doi.org/10.7759/cureus.46003

Nur, M. A., Uddin, M. R., Meghla, N. S., Uddin, M. J., & Amin, M. Z. (2023). In vitro anti-oxidant, anti-inflammatory, anti-bacterial, and cytotoxic effects of extracted colorants from two species of dragon fruit (Hylocereus spp.). FCA, 2, 100318. https://doi.org/10.1016/j.focha.2023.100318

Aswathi, V. P., Meera, S., Maria, C. A., & Nidhin, M. (2023). Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. NTEE, 8(2), 377-397.

Thatyana, M., Dube, N. P., Kemboi, D., Manicum, A. L. E., Mokgalaka-Fleischmann, N. S., & Tembu, J. V. (2023). Advances in phytonanotechnology: a plant-mediated green synthesis of metal nanoparticles using phyllanthus plant extracts and their antimicrobial and anticancer applications. Nanomaterials, 13(19), 2616.

Patil, S. P., Kumbhar, S. T., & Sahu, K. G. (2023). An overview on use of Nyctanthes arbor-tristis in green synthesis of nanoparticles. Nanotechnol. Environ. Eng, 8(4), 923-931.

Sahoo, B., Panigrahi, L. L., Jena, S., Jha, S., & Arakha, M. (2023). Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC advances, 13(17), 11406-11414.

Vasanthakumar, S., Manikandan, M., & Arumugam, M. (2024). Green synthesis, characterization and functional validation of bio-transformed selenium nanoparticles. Biochem. Biophys. Rep, 39, 101760. https://doi.org/10.1016/j.bbrep.2024.101760

Asadpour, L., Bandari, M. a. M., & Masouleh, R. S. (2024). Amikacin-loaded selenium nanoparticles improved antibacterial and antibiofilm activity of amikacin against bovine mastitis-causing Staphylococcus aureus. Heliyon, 11(1), e41103. https://doi.org/10.1016/j.heliyon.2024.e41103

Kamala, K., Santhosh, K., Pavithra, T., & Sivaperumal, P. (2024). Therapeutic potential of selenium nanoparticles synthesized by mangrove plant: Combatting oral pathogens and exploring additional biological properties. Journal of Trace Elements and Minerals, 9, 100167. https://doi.org/10.1016/j.jtemin.2024.100167

Magalhães, L. M., Segundo, M. A., Reis, S., & Lima, J. L. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta, 613(1), 1–19. https://doi.org/10.1016/j.aca.2008.02.047

Chanda, S., & Dave, R. (2009). In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview.

Afr. J. Microbiol. Res, 3(13), 981-996.

Bokhtiar, S., Sarker, D., Akter, A., Salam, M., Ahmed, K., Anwar, M., Hossain, M., Ahmed, M., Bhuiyan, Kanta, R., Asaduzzaman, A., Ahmed, K. S., Hossain, H., & Rafiquzzaman, S. (2024). Nutritional Profiling, Phytochemical Screening, Cytotoxicity, and Antioxidant Content Analysis for Different Crude Extracts of Ulva lactuca from Coast of Bangladesh. Future Foods, 100513. https://doi.org/10.1016/j.fufo.2024.100513

Fayoumi, L., Khalil, M., Ghareeb, D., Chokr, A., Bouaziz, M., & El-Dakdouki, M. H. (2022). Phytochemical constituents and therapeutic effects of the essential oil of rose geranium (Pelargonium hybrid) cultivated in Lebanon. S. Afr. J. Bot, 147, 894–902. https://doi.org/10.1016/j.sajb.2022.03.039

Bastos, J. C., Gaspar, M. M., Pereiro, A. B., & Araújo, J. M. (2024). Role of ionic liquids in ibuprofen-based eutectic systems: Aqueous solubility, permeability, human cytotoxicity, hemolytic activity and anti-inflammatory activity. J. Mol. Liq., 404, 124966. https://doi.org/10.1016/j.molliq.2024.124966

Divya, M., Shanti, G., Amalraj, S., Amiri-Ardekani, E., Gurav, S., & Ayyanar, M. (2023). Evaluation of in vitro enzyme inhibitory, anti-inflammatory, antioxidant, and antibacterial activities of Oldenlandia corymbosa L. and Oldenlandia umbellata L. whole plant extracts. Pharmacological Research - Modern Chinese Medicine, 8, 100286. https://doi.org/10.1016/j.prmcm.2023.100286

Thangapushbam, V., Sivakami, S., Rama, P., Jothika, M., & Muthu, K. (2024). A facile green synthesis of Ag@MnO2 nanoparticles using Martynia annua plant extract and their biological activity and catalytic reduction of dye. Results Chem, 7, 101495. https://doi.org/10.1016/j.rechem.2024.101495

Joesna, G., Alodhayb, A., Sasikumar, P., Sree, T. L., Ferin, R. Z., Sankar, D., Prabakaran, A., Prasath, M., Muthuramamoorthy, M., Mohamed, M. G., & Vimalan, M. (2025). Bio- synthesis Zinc oxide nanoparticle: Azadirachta Indica and Phyllanthus acidus mediated Green approach for enhanced biological efficacy. Chem. Phys. Impact, 100821. https://doi.org/10.1016/j.chphi.2025.100821

Romero-Chávez, M. M., Macías-Hernández, C. E., Ramos-Organillo, A., Jiménez-Ruiz, E. I., Robles-Machuca, M., Ocaño-Higuera, V. M., & Sumaya-Martínez, M. T. (2024). Synthesis and toxicity of monothiooxalamides against human red blood cells, brine shrimp (Artemia salina), and fruit fly (Drosophila melanogaster). Heliyon, 10(16), e36182. https://doi.org/10.1016/j.heliyon.2024.e36182

Downloads

Published

2025-04-05

How to Cite

1.
Thilagavathy PG, Rohini D, Shobana C, Usharani B, Kumar SV. Green Synthesis Of Selenium Nanoparticles Using Leaf Extract Of Mukia Maderasapatana And Deciphering Its Biomedicinal Properties. J Neonatal Surg [Internet]. 2025Apr.5 [cited 2025May21];14(11S):824-36. Available from: https://jneonatalsurg.com/index.php/jns/article/view/3060