Optimising Multi-Objective Taguchi-Based Energy Management Systems for Reduced Power Consumption

Authors

  • Mohan T Patel
  • Nikhil J. Rathod

DOI:

https://doi.org/10.63682/jns.v13i1.9939

Keywords:

Energy Management System, Electricity Demand Optimization, Taguchi Method, Signal-to-Noise Ratio, Analysis of Variance (ANOVA), Mean Squared Deviation, Energy Efficiency, Experiment Design, Robust Optimization

Abstract

 To boost system efficiency, reduce operating costs, and enhance reliability, modern energy management systems (EMS) must efficiently control power demand. This work use the Taguchi design of experiments approach to systematically optimize electricity demand. Three control parameters, each at three levels, were investigated in order to optimize system efficiency while reducing power consumption and mean squared deviation (MSD). Response tables, analysis of variance (ANOVA), and signal-to-noise (S/N) ratio analysis were used to identify the most critical parameters and their optimal values.

The results demonstrate that factor B has the most impact on power demand and MSD, accounting for more than 90% of the total fluctuation, whereas factor C is mainly in charge of boosting system efficiency. The optimal parameter combination for lowering power consumption and MSD was found to be A₁B₁C₂.₃, even though maximum efficiency was reached at A₃B₂C. The produced models show excellent prediction accuracy with R2 values exceeding 96%..
..

Downloads

Download data is not yet available.

References

[1] Al Zubaidi, S., & Tomsovic, K. (2021). Energy Management System Architectures and Functionalities: A Comprehensive Review. Electric Power Systems Research, 198, 107329.

[2] Amin, S., Khan, M. J., & Qu, Q. (2019). Optimization Techniques for Demand Side Management in Smart Grid Systems: A Review. Renewable and Sustainable Energy Reviews, 112, 97–128.

[3] Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. (2018). Application of Taguchi and Response Surface Methodology for Optimization of Energy Consumption. Journal of Cleaner Production, 180, 720–732.

[4] Goyal, R., Singh, M., & Gupta, A. (2022). Taguchi–Grey Relational Analysis for Multi Objective Optimization of Distribution Networks. International Journal of Electrical Power & Energy Systems, 135, 107469.

[5] Han, Y., Zeng, P., & Wang, X. (2023). A Review of Energy Management System (EMS) Design and Implementation for Smart Grids. IEEE Access, 11, 14521–14542.

[6] Hocaoglu, F. O., & Karabiber, A. (2019). Pareto Based Multi Objective Optimization Techniques in Microgrid Energy Management. Applied Energy, 250, 710–725.

[7] Lee, J., & Park, Y. (2021). Taguchi Optimization of Control Parameters in Power Electronics for Improved Efficiency and Power Quality. IEEE Transactions on Industrial Electronics, 68(4), 3221–3230.

[8] Liu, H., & Wang, S. (2019). Particle Swarm Optimization Based Residential Load Scheduling for Smart Grids Under Time of Use Pricing. Energy, 188, 116040.

[9] Minitab, LLC. (2024). Minitab Statistical Software: Release 21. Minitab, LLC.

[10] Singh, R. K., & Sharma, P. (2021). Performance Optimization of Wind Turbines Using Taguchi DOE Under Variable Wind Conditions. Renewable Energy, 163, 1466–1478.

[11] Zhang, S., Li, Y., & Wu, L. (2018). Hybrid Genetic Algorithm for Demand Side Management in Smart Grids. Energy, 165, 757–768.

[12] Zheng, X., & Li, J. (2020). Energy Management Systems: Structure, Models and Optimization Framework. Energy Reports, 6, 239–252.

[13] Nur E Alam, M., Abedin, T., Samsudin, N. A., et al. (2025). Optimization of energy management in Malaysian microgrids using fuzzy logic based EMS scheduling controller. Scientific Reports, 15, 995. doi:10.1038/s41598 024 82360 4 — A fuzzy logic EMS improves microgrid scheduling and performance.

[14] Khan, A. M., Hekmati, A., & Bagheri, M. (2025). Enhancing cost effectiveness in residential microgrids: optimization for EMS with proactive EV charging. Frontiers in Energy Research.

[15] Qamar, H. M., Guo, X., Seif Ghith, E., et al. (2025). Assessment of energy management and power quality improvement of hydrogen based microgrid system through PSO MWWO technique. Scientific Reports, 15, 863. doi:10.1038/s41598 024 78153 4 — Investigates EMS optimization for power quality in hydrogen microgrids.

[16] Optimal energy management system for grid connected hybrid power plant and battery integrated into multilevel configuration. (2024). Energy, 294, 130765 — Presents an EMS for hybrid renewable power systems with experimental HIL results.

[17] Zhang, H., Shi, X., Lu, H., et al. (2025). Energy management method of integrated energy system based on energy and carbon pricing strategy and reinforcement learning. Frontiers in Energy Research.

[18] Etghani, M. M., & Boodaghi, H. (2025). Artificial Neural Networks and Taguchi Methods for Energy Systems Optimization: A Comprehensive Review. Energy Engineering, 122(11), 4385–4474 — Reviews ANN and Taguchi applications in energy system optimization.

[19] Energy management system in networked microgrids: an overview. (2024). Energy Systems. Springer — A recent survey on EMS architectures and optimization in connected microgrids.

[20] Zarma, T. A., Ali, E. A., Galadima, A. A., et al. (2025). Energy demand forecasting for hybrid microgrid systems using machine learning models. Proceedings of Engineering and Technology Innovation, 29, 68–83 — Focuses on ML based demand forecasting in EMS.

[21] Rathod, N.J., Chopra, M.K., Chaurasiya, P.K. et al. Optimization on the Turning Process Parameters of SS 304 Using Taguchi and TOPSIS. Ann. Data. Sci. 10, 1405–1419 (2023). https://doi.org/10.1007/s40745-021-00369-2 22.

[22] Rathod, N.J., Chopra, M.K., Shelke, S.N. et al. Investigations on hard turning using SS304 sheet metal component grey based Taguchi and regression methodology. Int J Interact Des Manuf 18, 2653–2664 (2024). https://doi.org/10.1007/s12008-023-01244-5 23.

[23] N.J. Rathod, M.K. Chopra, U.S. Vidhate, N.B. Gurule, U.V. Saindane, Investigation on the turning process parameters for tool life and production time using Taguchi analysis, Materials Today: Proceedings, Volume 47, Part 17, 2021, Pages 5830-5835, https://doi.org/10.1016/j.matpr.2021.04.199. 24.

[24] Rathod, N.J., Chopra, M.K., Chaurasiya, P.K. et al. Design and optimization of process parameters for hard turning of AISI 304 stainless steel using Taguchi-GRA-PCA. Int J Interact Des Manuf 17, 2403– 2414 (2023). https://doi.org/10.1007/s12008-022-01021-w 25.

[25] Rathod, N.J., Chopra, M.K., Chaurasiya, P.K. et al. Optimization of Tool Life, Surface Roughness and Production Time in CNC Turning Process Using Taguchi Method and ANOVA. Ann. Data. Sci. 10, 1179–1197 (2023). https://doi.org/10.1007/s40745-022-00423-7 26.

[26] N.J. Rathod, M.K. Chopra, U.S. Vidhate, U.V. Saindane, Multi objective optimization in turning operation of SS304 sheet metal component, Materials Today: Proceedings, Volume 47, Part 17, 2021, Pages 5806-5811, https://doi.org/10.1016/j.matpr.2021.04.143 27.

[27] P. K. Chaurasiya, N. J. Rathod, P. K. Jain, V. Pandey, Shashikant and K. Lala, "Material Selection for Optimal Design Using Multi-Criteria Decision Making," 2023 3rd International Conference on Advancement in Electronics & Communication Engineering (AECE), GHAZIABAD, India, 2023, pp. 206-210, doi: 10.1109/AECE59614.2023.10428303. 28.

[28] Mahesh T. Dhande, et al. 2023. HMCMA: Design of an Efficient Model with Hybrid Machine Learning in Cyber security for Enhanced Detection of Malicious Activities. International Journal on Recent and Innovation Trends in Computing and Communication. 11, 11s (Oct. 2023), 721–734. DOI:https://doi.org/10.17762/ijritcc.v11i11s.9729.

[29] T. Dhande M, Tiwari S, Rathod N. Design of an efficient Malware Prediction Model using Auto Encoded & Attention-based Recurrent Graph Relationship Analysis. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Jan. 22 [cited 2025 Dec. 13];7(1):71-87. Available from: https://asianrepo.org/index.php/irjmt/article/view/103 30.

[30] Kalangi, C., Rathod, N.J., Madhuri, K.S. et al. Performance optimization of ethanol blends in diesel model using Taguchi and grey relational approach. Sci Rep 15, 36048 (2025). 31.

[31] Rathod, N.J., Bonde, P. & Nehete, H.R. Parametric optimization of WEDM of SS 304 stainless steel for material removal rate and surface roughness using Taguchi and Response Surface Methodology. Interactions 246, 60 (2025). https://doi.org/10.1007/s10751-025-02273-0 32.

[32] Nikhil Janardan Rathod , Praveen B. M. , Mayur Gitay, Sidhhant N. Patil, Mohan T. Patel, (2025) Optimization Of Multiple Objectives in The Machining Process of SS304 Sheet Metal Components.. Journal of Neonatal Surgery, 14 (14s), 801-809 33.

[33] Rathod, N.J. et al. (2026). Wire Electrical Discharge Machining Process Parameter Optimization via the Taguchi Method. In: Al-Ramahi, N., Musleh Al-Sartawi, A.M.A., Kanan, M. (eds) Artificial Intelligence in the Digital Era. Studies in Systems, Decision and Control, vol 594. Springer, Cham. 34.

[34] Rathod, N.J. et al. (2026). Aluminum Machining Process Parameter Optimization in WEDM with the GRA Approach. In: Al-Ramahi, N., Musleh Al-Sartawi, A.M.A., Kanan, M. (eds) Artificial Intelligence in the Digital Era. Studies in Systems, Decision and Control, vol 594. Springer, Cham. 35.

[35] Rathod, N.J. et al. (2026). Optimizing Wire Electric Discharge Machining Process Parameters for AISI 304 Stainless Steel via Taguchi Design of Experiments. In: Al-Ramahi, N., Musleh Al-Sartawi, A.M.A., Kanan, M. (eds) Artificial Intelligence in the Digital Era. Studies in Systems, Decision and Control, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-89771-9_8 36.

[36] Rathod, N.J. et al. (2026). SS304 CNC Turning Process Mathematical Modeling and Machining Parameter Optimization Utilizing the Taguchi Technique. In: Al-Ramahi, N., Musleh Al-Sartawi, A.M.A., Kanan, M. (eds) Artificial Intelligence in the Digital Era. Studies in Systems, Decision and Control, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-89771-9_2 37.

[37] Nikhil Janardan Rathod, Praveen B. M., Mayur Gitay, Sidhhant N. Patil, Mohan T. Patel, (2025) Implementation of Machine Learning Approaches for the Modeling and Predictive Turning Maintenance Operations Incorporating Lubrication and Cooling in Systems of Manufacturing. Journal of Neonatal Surgery, 14 (15s), 1741-1748 38.

[38] Nikhil J. Rathod, Nilesh Ingale, Mahesh T. Dhande, Santhosh H Pawar, A REVIEW ON AI ENABLED MULTI MODEL CARDIOVASCULAR MONITORING SYSTEM FOR PREDICTION OF PHYSIOLOGICAL STRESS, Department of Computer Science and Technology, 2025, 180724/IJORAR-1019, 39.

[39] Mayur Jayant Gitay, Dr. Nilesh Diwakar, Dr. M. K. Chopra, Dr. Nikhil J. Rathod, Analysis of the performance of a CI engine operating in dual fuel mode with biogas and biodiesel, Eur. Chem. Bull. 2023,12(3) 4462-4472 40.

[40] Prashant S. Raut, Dr. Nilesh Diwakar, Sumit Raut, Dr. Nikhil J. Rathod, Performance Evaluation and Emission Characteristic of Biodiesel (Methyl Ester) CI Engine, Eur. Chem. Bull. 2023, 12 (S3), 2240 – 2245 41. Sumit R. Raut, Dr. Nilesh Diwaka, Prashant S. Raut,

[41] Dr. N. J. Rathod, Additives Characterization for Enhanced Biodiesel Performance in a CI Engine, Eur. Chem. Bull. 2023, 12 (S3), 2234 – 2239 42.

[42] Sumit R. Raut, Dr. Nilesh Diwakar, Prashant S. Raut, Dr. N. J. Rathod, The Technique Performance Evaluation and Emission Characteristics of diesel, cerium oxide, and ethanol, Eur. Chem. Bull. 2023, 12 (S3), 3172 – 3184. 43.

[43] Prashant S. Raut, Dr. Nilesh Diwakar, Sumit Raut, Dr. Nikhil J. Rathod, The Technique Performance Evaluation and Emission Characteristics of Biodiesel, Eur. Chem. Bull. 2023, 12 (S3), 3147 – 3155

[44] Dr. Mayur Jayant Gitay, Dr. Nikhil J. Rathod , Mr. Rohit K. Dhende, Mr. Sagar S. Sasan. “PERFORMANCE ANALYSIS OF NATURAL FIBER REINFORCED COMPOSITES FOR SUSTAINABLE ENGINEERING APPLICATIONS”, Multidisciplinary Journal of Academic Publications ISSN (Online): 3107-538X Vol. 02, Issue 01, January – February 2026, MJAP/05/0402.

[45] Dr. Mayur Jayant Gitay, Dr. Nikhil J. Rathod , Mr. Rohit K. Dhende, Mr. Sagar S. Sasan, “IMPACT AND CRASHWORTHINESS PERFORMANCE OF COMPOSITE STRUCTURES IN AUTOMOTIVE APPLICATIONS”, Multidisciplinary Journal of Academic Publications ISSN (Online): 3107-538X Vol. 02, Issue 01, January – February 2026, 2026/MJAP/09/0403.

[46] Dr. Mayur Jayant Gitay, Dr. Nikhil J. Rathod , Mr. Rohit K. Dhende, Mr. Sagar S. Sasan, “IMPACT AND CRASHWORTHINESS PERFORMANCE OF COMPOSITE STRUCTURES IN AUTOMOTIVE APPLICATIONS”, Multidisciplinary Journal of Academic Publications ISSN (Online): 3107-538X Vol. 02, Issue 01, January – February 2026, 2026/MJAP/09/0403.

[47] Dr. Mayur Jayant Gitay, Dr. Nikhil J. Rathod , Mr. Rohit K. Dhende, Mr. Sagar S. Sasan, “THERMO-MECHANICAL PERFORMANCE OF POLYMER MATRIX COMPOSITES: A CRITICAL REVIEW”, Multidisciplinary Journal of Academic Publications ISSN (Online): 3107-538X Vol. 02, Issue 01, January – February 2026, 2026/MJAP/09/0405.

Downloads

Published

2024-12-24

How to Cite

1.
T Patel M, J. Rathod N. Optimising Multi-Objective Taguchi-Based Energy Management Systems for Reduced Power Consumption. J Neonatal Surg [Internet]. 2024 Dec. 24 [cited 2026 Feb. 3];13(1):2042-5. Available from: https://jneonatalsurg.com/index.php/jns/article/view/9939

Issue

Section

Original Article