Gastroretentive Drug Delivery Systems: Innovative Strategies for Enhanced Gastric Retention and Improved Oral Drug Absorption
Keywords:
Gastroretentive drug delivery systems, bioavailability, mucoadhesive, therapeutic efficacyAbstract
Oral drug delivery is the preferred route of administration due to its convenience and patient compliance. However, it encounters limitations such as poor solubility, intestinal instability, and incomplete absorption resulting from rapid gastrointestinal transit. Gastroretentive drug delivery systems (GRDDS) have emerged as a strategy to address these challenges by prolonging gastric residence time and enhancing the bioavailability of drugs absorbed in the stomach or upper intestine. This review examines physiological factors influencing gastric retention, including gastric emptying, pH variations, and absorption windows. Various GRDDS approaches—such as floating, swelling/expandable, mucoadhesive, high-density, magnetic, and raft-forming systems—are analyzed with respect to their mechanisms, formulation strategies, and evaluation parameters. Both natural and synthetic polymers play a crucial role in designing these systems, while innovations like 3D printing, smart polymers, and nanotechnology expand their potential. Despite advancements, challenges persist in translating laboratory success to clinical outcomes. GRDDS represent an innovation for improving oral bioavailability, enabling site-specific targeting, and enhancing therapeutic efficacy for drugs with narrow absorption windows or localized gastric action
Downloads
References
Almansour, M. A., Aldosary, M. S., Almegbel, M. T., Alsubaie, S. A., & Alzahrani, A. M. (n.d.). Recent Innovations in Oral Drug Delivery Systems: Examining Current Challenges and Future Opportunities for Enhanced Therapeutic Efficacy. International Journal of Health Sciences, 7(S1), 3352–3370.
Alqahtani, A. A., Mohammed, A. A., Fatima, F., & Ahmed, M. M. (2023). Fused Deposition Modelling 3D-Printed Gastro-Retentive Floating Device for Propranolol Hcl Tablets. Polymers, 15(17), 3554. https://doi.org/10.3390/polym15173554
Amin, Md. L., Ahmed, T., & Mannan, Md. A. (2016). Development of Floating-Mucoadhesive Microsphere for Site Specific Release of Metronidazole. Advanced Pharmaceutical Bulletin, 6(2), 195–200. https://doi.org/10.15171/apb.2016.027
Awasthi, R., & Kulkarni, G. T. (2016). Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: Where do we stand? Drug Delivery, 23(2), 378–394. https://doi.org/10.3109/10717544.2014.936535
Azman, M., Sabri, A. H., Anjani, Q. K., Mustaffa, M. F., & Hamid, K. A. (2022). Intestinal Absorption Study: Challenges and Absorption Enhancement Strategies in Improving Oral Drug Delivery. Pharmaceuticals (Basel, Switzerland), 15(8), 975. https://doi.org/10.3390/ph15080975
Bazira, P. J. (2023). Anatomy of the stomach. Surgery (Oxford), 41(11), 698–702.
Blynskaya, E. V., Tishkov, S. V., Vinogradov, V. P., Alekseev, K. V., Marakhova, A. I., & Vetcher, A. A. (2022). Polymeric Excipients in the Technology of Floating Drug Delivery Systems. Pharmaceutics, 14(12), 2779. https://doi.org/10.3390/pharmaceutics14122779
Borade, A. U., Shah, K., Kale, S. N., Katyarmal, A. D., Gajbhiye, S. S., & Kolhe, N. S. (2022). Research on natural polymer in execution of raft forming gastro- retentive drug delivery system. International Journal of Health Sciences. https://doi.org/10.53730/ijhs.v6nS1.7966
Chen, Y.-C., Ho, H.-O., Liu, D.-Z., Siow, W.-S., & Sheu, M.-T. (2015). Swelling/Floating Capability and Drug Release Characterizations of Gastroretentive Drug Delivery System Based on a Combination of Hydroxyethyl Cellulose and Sodium Carboxymethyl Cellulose. PLoS ONE, 10(1), e0116914. https://doi.org/10.1371/journal.pone.0116914
Cong, Y., Geng, J., Wang, H., Su, J., Arif, M., Dong, Q., Chi, Z., & Liu, C. (2019). Ureido-modified carboxymethyl chitosan-graft-stearic acid polymeric nano-micelles as a targeted delivering carrier of clarithromycin for Helicobacter pylori: Preparation and in vitro evaluation. International Journal of Biological Macromolecules, 129, 686–692. https://doi.org/10.1016/j.ijbiomac.2019.01.227
Daihom, B. A., Bendas, E. R., Mohamed, M. I., & Badawi, A. A. (2020). Development and in vitro evaluation of domperidone/Dowex resinate embedded gastro-floatable emulgel and effervescent alginate beads. Journal of Drug Delivery Science and Technology, 59, 101941. https://doi.org/10.1016/j.jddst.2020.101941
Daniels, I. R., & Allum, W. H. (2005). The Anatomy and Physiology of the Stomach. In Upper Gastrointestinal Surgery (pp. 17–37). Springer-Verlag. https://doi.org/10.1007/1-84628-066-4_2
Davanço, M. G., Campos, D. R., & Carvalho, P. de O. (2020). In vitro – In vivo correlation in the development of oral drug formulation: A screenshot of the last two decades. International Journal of Pharmaceutics, 580, 119210. https://doi.org/10.1016/j.ijpharm.2020.119210
Devadasu, V. R., Deb, P. K., Maheshwari, R., Sharma, P., & Tekade, R. K. (2018). Physicochemical, pharmaceutical, and biological considerations in GIT absorption of drugs. In Dosage form design considerations (pp. 149–178). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128144237000058
Djebbar, M., Chaffai, N., & Bouchal, F. (2020). Development of Floating Tablets of Metformin HCl by Thermoplastic Granulation. Part II: In Vitro Evaluation of the Combined Effect of Acacia Gum/HPMC on Biopharmaceutical Performances. Advanced Pharmaceutical Bulletin, 10(3), 399–407. https://doi.org/10.34172/apb.2020.048
Dupoiron, D., Douillard, T., & Carvajal, G. (2020). Usefulness of imaging for intrathecal drug delivery systems: An update. Medical Research Archives, 8(7). https://esmed.org/MRA/mra/article/view/2175
Faizi, S. M., Rathi, P. N., Tajane, S. V., Burghate, R. M., & Wasankar, S. R. (2012). Drug delivery to absorption window through floating microspheres: A Review. Research Journal of Pharmaceutical Dosage Forms and Technology, 4(3), 135–142.
Gupta, A., Shetty, S., Mutalik, S., Chandrashekar H, R., K, N., Mathew, E. M., Jha, A., Mishra, B., Rajpurohit, S., Ravi, G., Saha, M., & Moorkoth, S. (2023). Treatment of H. pylori infection and gastric ulcer: Need for novel Pharmaceutical formulation. Heliyon, 9(10), e20406. https://doi.org/10.1016/j.heliyon.2023.e20406
Hamed, R., Awadallah, A., Sunoqrot, S., Tarawneh, O., Nazzal, S., AlBaraghthi, T., Al Sayyad, J., & Abbas, A. (2016). pH-Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech, 17(2), 418–426. https://doi.org/10.1208/s12249-015-0365-2
Harshdeep Desai*, T. R. (2024). Beyond Conventional: Recent Advancement on Floating Drug Delivery Systems: An Approach to Oral Controlled and Sustained Drug Delivery Via Gastric Retention. https://doi.org/10.5281/ZENODO.14546659
Huang, W.-J., & Wang, P. S. (2012). Adaptation of gastrointestinal motility to diabetes mellitus. Adaptive Medicine, 4(1), 9–14.
Ibrahim, M., Naguib, Y. W., Sarhan, H. A., & Abdelkader, H. (2019). Gastro-retentive oral drug delivery systems: A promising approach for narrow absorption window drugs. Journal of Advanced Biomedical and Pharmaceutical Sciences, 2(3), 98–110.
Kimura, T., & Higaki, K. (2002). Gastrointestinal Transit and Drug Absorption. Biological and Pharmaceutical Bulletin, 25(2), 149–164. https://doi.org/10.1248/bpb.25.149
Kumar, S., Chohan, J. S., Kaur, H., Kasnia, R., Demiwal, S., & Nehra, B. (2024). An Updated Overview of Gastro-retentive Floating Drug Delivery Systems: Formulation Strategies and Application. Journal of Drug Delivery & Therapeutics, 14(8). https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=22501177&AN=179582746&h=foFjyCHRVB5scUnDKubQwqxOZA%2BRgNQuHHWCxqMbNIxgNAYn3evvzouplbbAfRI61AHt2UKZH2e1WcoZ7u8Rmg%3D%3D&crl=c
Liang, Y.-K., Cheng, W.-T., Chen, L.-C., Sheu, M.-T., & Lin, H.-L. (2023). Development of a Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) of Ciprofloxacin Hydrochloride. Pharmaceutics, 15(5), 1428. https://doi.org/10.3390/pharmaceutics15051428
Liu, J., Xu, Y. T., Kong, J. J., Yu, G. S., Li, G. B., Wang, J. P., & Zheng, Y. W. (2023). Risk factors for delayed gastric emptying after laparoscopic pancreaticoduodenectomy: A single-center experience of 1 000 cases. Zhonghua Wai Ke Za Zhi [Chinese Journal of Surgery], 61(10), 882–888.
Loke, Y. H., Jayakrishnan, A., Mod Razif, M. R. F., Yee, K. M., Kee, P. E., Goh, B. H., Helal Uddin, A. B. M., Lakshminarayanan, V., & Liew, K. B. (2024). A Comprehensive Review of Challenges in Oral Drug Delivery Systems and Recent Advancements in Innovative Design Strategies. Current Pharmaceutical Design, 31(5), 360–376. https://doi.org/10.2174/0113816128338560240923073357
Martău, G. A., Mihai, M., & Vodnar, D. C. (2019). The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers, 11(11), 1837. https://doi.org/10.3390/polym11111837
Moussa, E., Siepmann, F., Flament, M. P., Benzine, Y., Penz, F., Siepmann, J., & Karrout, Y. (2019). Controlled release tablets based on HPMC:lactose blends. Journal of Drug Delivery Science and Technology, 52, 607–617. https://doi.org/10.1016/j.jddst.2019.05.028
Nyamweya, N. N. (2021). Applications of polymer blends in drug delivery. Future Journal of Pharmaceutical Sciences, 7(1), 18. https://doi.org/10.1186/s43094-020-00167-2
Olechno, K., & Winnicka, K. (2019). Ethylcellulose–A Pharmaceutical Excipient with Multidirectional Application in Drug Dosage Forms Development. Materials, 12, 3386. https://doi.org/10.3390/ma12203386
Pan, P., Svirskis, D., Waterhouse, G. I. N., & Wu, Z. (2023). Hydroxypropyl Methylcellulose Bioadhesive Hydrogels for Topical Application and Sustained Drug Release: The Effect of Polyvinylpyrrolidone on the Physicomechanical Properties of Hydrogel. Pharmaceutics, 15(9), 2360. https://doi.org/10.3390/pharmaceutics15092360
Pandey, S., Pandey, T., Khan, S., & Wamankar, S. (2024). Enhancement of Low Solubility and Low Permeability Drug Azithromycin Using Crystallization Techniques. International Journal of Advanced Multidisciplinary Research and Studies, 4(6), 917–921. https://doi.org/10.62225/2583049x.2024.4.6.3532
Sahu, V. K., Sharma, N., Sahu, P. K., & Saraf, S. A. (2017). FORMULATION AND EVALUATION OF FLOATING-MUCOADHESIVE MICROSPHERES OF NOVEL NATURAL POLYSACCHARIDE FOR SITE SPECIFIC DELIVERY OF RANITIDINE HYDROCHLORIDE. International Journal of Applied Pharmaceutics, 15–19. https://doi.org/10.22159/ijap.2017v9i3.16137
Shree, D., Patra, C. N., & Sahoo, B. M. (2022). Fabrication and Applications of Raft-Forming System—An EmergingTrend in Gastro-retentive Drug Delivery System. Nanoscience & Nanotechnology-Asia, 12(3), e070722206711. https://doi.org/10.2174/2210681212666220707141136
Sivanathan, G., Rajagopal, S., Mahadevaswamy, G., Angamuthu, G., & Dhandapani, N. V. (2024). PHARMACEUTICAL NANOCRYSTALS: AN EXTENSIVE OVERVIEW. International Journal of Applied Pharmaceutics, 1–9. https://doi.org/10.22159/ijap.2024v16i6.52257
Spósito, L., Fonseca, D., Gonçalves Carvalho, S., Sábio, R. M., Marena, G. D., Bauab, T. M., Bagliotti Meneguin, A., Parreira, P., L. Martins, M. C., & Chorilli, M. (2024). Engineering resveratrol-loaded chitosan nanoparticles for potential use against Helicobacter pylori infection. European Journal of Pharmaceutics and Biopharmaceutics, 199, 114280. https://doi.org/10.1016/j.ejpb.2024.114280
Tripathi, J., Thapa, P., Maharjan, R., & Jeong, S. H. (2019). Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics, 11(4), 193. https://doi.org/10.3390/pharmaceutics11040193
Viswanadha, L. S., Arcot, Y., Lin, Y.-T., & Akbulut, M. E. S. (2024). A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems. JCIS Open, 15, 100120. https://doi.org/10.1016/j.jciso.2024.100120
Vrettos, N.-N., Roberts, C. J., & Zhu, Z. (2021). Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics, 13(10), 1591. https://doi.org/10.3390/pharmaceutics13101591
Waknis, V., & Narang, A. S. (2023). Gastroretentive Drug Delivery Systems. In M. Hu & X. Li (Eds.), Oral Bioavailability and Drug Delivery (1st ed., pp. 637–656). Wiley. https://doi.org/10.1002/9781119660699.ch33
Wang, D., Jiang, Q., Dong, Z., Meng, T., Hu, F., Wang, J., & Yuan, H. (2023). Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Advanced Drug Delivery Reviews, 203, 115130.
Wang, S., Chen, X., Han, X., Hong, X., Li, X., Zhang, H., Li, M., Wang, Z., & Zheng, A. (2023). A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics, 15(2), 416. https://doi.org/10.3390/pharmaceutics15020416
Wiwattanapatapee, R., Klabklay, K., Raksajit, N., Siripruekpong, W., Leelakanok, N., & Petchsomrit, A. (2023). The development of an in-situ biopolymer-based floating gel for the oral delivery of metformin hydrochloride. Heliyon, 9(4), e14796. https://doi.org/10.1016/j.heliyon.2023.e14796
Yau, A. M., McLaughlin, J., Maughan, R. J., Gilmore, W., Ashworth, J. J., & Evans, G. H. (2018). A pilot study investigating the influence of glucagon-like peptide-1 receptor single nucleotide polymorphisms on gastric emptying rate in Caucasian men. Frontiers in Physiology, 9, 1331.
Zhang, A., Jung, K., Li, A., Liu, J., & Boyer, C. (2019). Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Progress in Polymer Science, 99, 101164. https://doi.org/10.1016/j.progpolymsci.2019.101164
Zheng, B., Wang, L., Yi, Y., Yin, J., & Liang, A. (2024). Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian Journal of Pharmaceutical Sciences, 19(4), 100943. https://doi.org/10.1016/j.ajps.2024.100943
Zhi, H., Zhou, P., Chen, Y., Zhao, X., Hong, Y., Lin, M., & Yang, C. (2021). Buoyancy Regulation Strategy for Underwater Profiler Based on Adaptive Genetic Algorithm. Journal of Marine Science and Engineering, 9(1), 53. https://doi.org/10.3390/jmse9010053
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.