Green Synthesis Of Titanium Dioxide Nanoparticles By Using Ethanolic Leaf Extract Of Jatropha Curcas L.

Authors

  • Kishor Dadaso Madane
  • Sandeep Ravindra Kane
  • Shrinivas Krishna Mohite
  • Shailaja Jaykumar Kamble
  • Akshada Vivek Deshmukh
  • Avani Krushnaji Shewale

Keywords:

Fluoroquinolones (FQs), Antibacterial agents, Anticancer activity, Urinary tract infections (UTIs), Antimicrobial agents, Antioxidant

Abstract

The current study presents a green, eco-friendly approach for the synthesis of titanium dioxide (TiO₂) nanoparticles using ethanolic leaf extract of Jatropha curcas L., a medicinal plant rich in bioactive compounds. Traditional chemical and physical synthesis methods often involve hazardous reagents and energy-intensive processes; in contrast, this biological method offers a sustainable alternative. The leaves were extracted via Soxhlet apparatus using ethanol as solvent, and the resulting extract was employed in the reduction and stabilization of TiO₂ nanoparticles. The synthesized nanoparticles were characterized using GC-MS, DLS, zeta potential, SEM, and XRD techniques. GC-MS analysis confirmed the presence of twelve major phytochemicals, such as (+)-2-Bornanone, caryophyllene, alpha-pinene, and flavonoids, which are known for their antioxidant and antimicrobial properties. DLS analysis revealed an average particle size of 125 nm with a PDI of 0.410, indicating moderate monodispersity. Zeta potential analysis showed a negative surface charge of -35.2 mV, confirming high colloidal stability. SEM images revealed rough, wrinkled surfaces suggesting high surface reactivity, while XRD analysis confirmed the crystalline anatase phase of TiO₂. Antioxidant activity assessed via DPPH assay demonstrated a significant dose-dependent response, with a maximum inhibition of 73.57% at 100 µg/mL and an IC₅₀ value of 75.08 µg/mL, comparable to ascorbic acid.

Downloads

Download data is not yet available.

References

Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog [Internet]. 2006;22(2):577–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16599579

Faraz A, Faizan M, Fariduddin Q, Hayat S. Response of Titanium Nanoparticles to Plant Growth: Agricultural Perspectives. In 2020. p. 101–10. Available from: http://link.springer.com/10.1007/978-3-030-33996-8_5

. Batley GE, Kirby JK, McLaughlin MJ. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res [Internet]. 2013 Mar 19;46(3):854–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22759090

Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res [Internet]. 2012 Sep 19;14(9):1109. Available from: http://link.springer.com/10.1007/s11051-012-1109-9

. Lai Y, Wang L, Liu D, Chen Z, Lin C. TiO 2 ‐Based Nanomaterials: Design, Synthesis, and Applications. J Nanomater [Internet]. 2015 Jan 5;2015(1). Available from: https://onlinelibrary.wiley.com/doi/10. 1155/2015/250632

Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN. Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN Appl Sci [Internet]. 2019 Apr 7;1(4):310. Available from: http://link.springer.com/10.1007/s42452-019-0337-3

. Riayatsyah TMI, Sebayang AH, Silitonga AS, Padli Y, Fattah IMR, Kusumo F, Ong HC, Mahlia TMI. Current Progress of Jatropha Curcas Commoditisation as Biodiesel Feedstock: A Comprehensive Review. Front Energy Res [Internet]. 2022 Jan 14;9. Available from: https://www.frontiersin.org/articles/10.3389/fenrg.2021.815416/full

. Ruatpuia JVL, Halder G, Vanlalchhandama M, Lalsangpuii F, Boddula R, Al-Qahtani N, Niju S, Mathimani T, Rokhum SL. Jatropha curcas oil a potential feedstock for biodiesel production: A critical review. Fuel [Internet]. 2024 Aug;370:131829. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016236124009773

. Hudlikar M, Joglekar S, Dhaygude M, Kodam K. Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater Lett [Internet]. 2012 May;75:196–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167577X12002042

. Wang Y, Zhou D, Bai X, Meng Q, Xie H, Wu G, Chen G, Hou Y, Li N. Chemical constituents from leaves of Jatropha curcas. Chinese Herb Med [Internet]. 2023 Jul;15(3):463–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/37538861

. Cavalcante NB, Diego da Conceição Santos A, Guedes da Silva Almeida JR. The genus Jatropha (Euphorbiaceae): A review on secondary chemical metabolites and biological aspects. Chem Biol Interact [Internet]. 2020 Feb;318:108976. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009279719303497

. Mokaizh AA Bin, Nour AH, Alazaiza MYD, Mustafa SE, Omer MS, Nassani DE. Extraction and Characterization of Biological Phytoconstituents of Commiphora gileadensis Leaves Using Soxhlet Method. Processes [Internet]. 2024 Jul 26;12(8):1567. Available from: https://www.mdpi.com/2227-9717/12/8/1567

. Suman TY, Rajasree SRR, Jayaseelan C, Mary RR, Gayathri S, Aranganathan L, Remya RR. GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity. Environ Sci Pollut Res [Internet]. 2016 Feb 6;23(3):2705–14. Available from: http://link.springer.com/10.1007/s11356-015-5468-5

. Ansari A, Siddiqui VU, Rehman WU, Akram MK, Siddiqi WA, Alosaimi AM, Hussein MA, Rafatullah M. Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating Its Photocatalytic and In Vitro Antimicrobial Activity. Catalysts [Internet]. 2022 Jan 30;12(2):181. Available from: https://www.mdpi.com/2073-4344/12/2/181

. Al Masoudi LM, Alqurashi AS, Abu Zaid A, Hamdi H. Characterization and Biological Studies of Synthesized Titanium Dioxide Nanoparticles from Leaf Extract of Juniperus phoenicea (L.) Growing in Taif Region, Saudi Arabia. Processes [Internet]. 2023 Jan 14;11(1):272. Available from: https://www.mdpi.com/2227-9717/11/1/272

. Nilam U Metkari, Sunita S Shinde, Supriya S Kore, Sipora S Gaikwad, Pallavi B Tanwade OBT. Development and Optimization of Nanoparticulate Drug Delivery System of Telmisartan by DoE Approach. Indian J Nov Drug Deliv. 2023;15(2):76–83.

. Widatalla HA, Yassin LF, Alrasheid AA, Rahman Ahmed SA, Widdatallah MO, Eltilib SH, Mohamed AA. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv [Internet]. 2022;4(3):911–5. Available from: https://xlink.rsc.org/?DOI=D1NA00509J

. Javed B, Raja NI, Nadhman A, Mashwani Z ur R. Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens. Appl Nanosci [Internet]. 2020 Jun 28;10(6):2057–67. Available from: http://link.springer.com/10.1007/s13204-020-01355-5.

Downloads

Published

2025-07-19

How to Cite

1.
Madane KD, Kane SR, Mohite SK, Kamble SJ, Deshmukh AV, Shewale AK. Green Synthesis Of Titanium Dioxide Nanoparticles By Using Ethanolic Leaf Extract Of Jatropha Curcas L. J Neonatal Surg [Internet]. 2025 Jul. 19 [cited 2026 Feb. 19];14(19S):1066-73. Available from: https://jneonatalsurg.com/index.php/jns/article/view/8390