A Review on Cysteine Protease Inhibitors as Antimalarial Agents
DOI:
https://doi.org/10.63682/jns.v14i32S.7942Keywords:
Cysteine protease, Falcipain-2, Malaria, Resistance, Plasmodium falciparumAbstract
Malaria is a significant worldwide health challenge as evident from the latest WHO malaria report. The disease, predominantly caused by Plasmodium falciparum, has become progressively challenging to manage due to the establishment and dissemination of resistance to existing antimalarial medications, including chloroquine, sulfadoxine-pyrimethamine, and artemisinin-based therapies. The increasing resistance underscores the pressing necessity to identify and formulate new antimalarial agents with innovative modes of action. A promising research avenue focuses on targeting parasite-specific enzymes critical for survival, especially cysteine proteases. Falcipain-2, a papain-like cysteine protease, is crucial for hemoglobin breakdown throughout the intraerythrocytic phase of the parasite's life cycle. Recent research has revealed many falcipain-2 inhibitors, such as vinyl sulfones, artemisinin hybrids, quinoline-based compounds, and suramin analogues, many of which exhibit significant antiparasitic efficacy and the ability to surmount resistance. This review highlights the potential of falcipain-2 as a target for antimalarial drug development. Continued research in this domain may result in the identification of efficacious treatments for drug-resistant malaria.
Downloads
Metrics
References
Venkatesan P (2025) WHO world malaria report 2024. The Lancet Microbe 6 (4). doi:10.1016/j.lanmic.2025.101073
Sato S (2021) Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. Journal of Physiological Anthropology 40 (1):1. doi:10.1186/s40101-020-00251-9
Epp C, Deitsch K (2006) Deciphering the export pathway of malaria surface proteins. Trends in Parasitology 22 (9):401-404. doi:https://doi.org/10.1016/j.pt.2006.07.002
Habtamu K, Petros B, Yan G (2022) Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Tropical Diseases, Travel Medicine and Vaccines 8 (1):27. doi:10.1186/s40794-022-00185-3
Venugopal K, Hentzschel F, Valkiūnas G, Marti M (2020) Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nature Reviews Microbiology 18 (3):177-189. doi:10.1038/s41579-019-0306-2
Haldar K, Murphy SC, Milner DA, Taylor TE (2007) Malaria: Mechanisms of Erythrocytic Infection and Pathological Correlates of Severe Disease. 2 (Volume 2, 2007):217-249. doi:https://doi.org/10.1146/annurev.pathol.2.010506.091913
Buffet PA, Safeukui I, Deplaine G, Brousse V, Prendki V, Thellier M, Turner GD, Mercereau-Puijalon O (2011) The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood 117 (2):381-392. doi:10.1182/blood-2010-04-202911 %J Blood
Kalantari P (2018) The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria. 6 (1):13
Lou J, Lucas R, Grau GE (2001) Pathogenesis of Cerebral Malaria: Recent Experimental Data and Possible Applications for Humans. 14 (4):810-820. doi:doi:10.1128/cmr.14.4.810-820.2001
Cowman AF, Healer J, Marapana D, Marsh K (2016) Malaria: Biology and Disease. Cell 167 (3):610-624. doi:10.1016/j.cell.2016.07.055
Wellems TE, Plowe CV (2001) Chloroquine-resistant malaria. The Journal of infectious diseases 184 (6):770-776. doi:10.1086/322858
Heinberg A, Kirkman L (2015) The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Annals of the New York Academy of Sciences 1342 (1):10-18. doi:10.1111/nyas.12662
Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale J-C, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505 (7481):50-55. doi:10.1038/nature12876
Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana SI, Yamauchi M, Opio W, Emoto S, Anywar DA, Kimura E, Palacpac NMQ, Odongo-Aginya EI, Ogwang M, Horii T, Mita T (2021) Evidence of Artemisinin-Resistant Malaria in Africa. The New England journal of medicine 385 (13):1163-1171. doi:10.1056/NEJMoa2101746
Ranson H, Lissenden N (2016) Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends Parasitol 32 (3):187-196. doi:10.1016/j.pt.2015.11.010
Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, Duparc S, Macintyre F, Baker M, Möhrle JJ (2016) Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. The Lancet Infectious diseases 16 (1):61-69. doi:10.1016/s1473-3099(15)00320-5
Sirawaraporn W (1998) Dihydrofolate reductase and antifolate resistance in malaria. Drug Resistance Updates 1 (6):397-406. doi:https://doi.org/10.1016/S1368-7646(98)80015-0
Egan TJ (2008) Haemozoin formation. Molecular and biochemical parasitology 157 (2):127-136. doi:10.1016/j.molbiopara.2007.11.005
Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB (1999) Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Molecular microbiology 33 (4):704-711. doi:10.1046/j.1365-2958.1999.01515.x
20. Aboulaila M, Munkhjargal T, Sivakumar T, Ueno A, Nakano Y, Yokoyama M, Yoshinari T, Nagano D, Katayama K, El-Bahy N, Yokoyama N, Igarashi I (2012) Apicoplast-targeting antibacterials inhibit the growth of Babesia parasites. Antimicrobial agents and chemotherapy 56 (6):3196-3206. doi:10.1128/aac.05488-11
Spillman NJ, Allen RJ, McNamara CW, Yeung BK, Winzeler EA, Diagana TT, Kirk K (2013) Na(+) regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell host & microbe 13 (2):227-237. doi:10.1016/j.chom.2012.12.006
Huang Z, Li R, Tang T, Ling D, Wang M, Xu D, Sun M, Zheng L, Zhu F, Min H, Boonhok R, Ding Y, Wen Y, Chen Y, Li X, Chen Y, Liu T, Han J, Miao J, Fang Q, Cao Y, Tang Y, Cui J, Xu W, Cui L, Zhu J, Wong G, Li J, Jiang L (2020) A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discovery 6 (1):93. doi:10.1038/s41421-020-00215-4
Reader J, van der Watt ME, Taylor D, Le Manach C, Mittal N, Ottilie S, Theron A, Moyo P, Erlank E, Nardini L, Venter N, Lauterbach S, Bezuidenhout B, Horatscheck A, van Heerden A, Spillman NJ, Cowell AN, Connacher J, Opperman D, Orchard LM, Llinás M, Istvan ES, Goldberg DE, Boyle GA, Calvo D, Mancama D, Coetzer TL, Winzeler EA, Duffy J, Koekemoer LL, Basarab G, Chibale K, Birkholtz LM (2021) Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nature communications 12 (1):269. doi:10.1038/s41467-020-20629-8
Rosenthal PJ (2004) Cysteine proteases of malaria parasites. International journal for parasitology 34 (13-14):1489-1499. doi:10.1016/j.ijpara.2004.10.003
Sijwali PS, Rosenthal PJ (2004) Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America 101 (13):4384-4389. doi:10.1073/pnas.0307720101
Patra J, Rana D, Arora S, Pal M, Mahindroo N (2023) Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. European Journal of Medicinal Chemistry 252:115299. doi:https://doi.org/10.1016/j.ejmech.2023.115299
Deu E (2017) Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. The FEBS journal 284 (16):2604-2628. doi:10.1111/febs.14130
Pandey KC, Dixit R (2012) Structure-function of falcipains: malarial cysteine proteases. Journal of tropical medicine 2012:345195. doi:10.1155/2012/345195
Cai H, Kuang R, Gu J, Wang Y (2011) Proteases in malaria parasites - a phylogenomic perspective. Current genomics 12 (6):417-427. doi:10.2174/138920211797248565
Chakka SK, Kalamuddin M, Sundararaman S, Wei L, Mundra S, Mahesh R, Malhotra P, Mohmmed A, Kotra LP (2015) Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Bioorganic & medicinal chemistry 23 (9):2221-2240. doi:10.1016/j.bmc.2015.02.062
Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Molecular and biochemical parasitology 120 (1):1-21. doi:https://doi.org/10.1016/S0166-6851(01)00438-8
Wang L, Nomura Y, Du Y, Liu N, Zhorov BS, Dong K (2015) A mutation in the intracellular loop III/IV of mosquito sodium channel synergizes the effect of mutations in helix IIS6 on pyrethroid resistance. Molecular pharmacology 87 (3):421-429. doi:10.1124/mol.114.094730
Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, Reed SL, Rosenthal PJ (2018) Cysteine proteases in protozoan parasites. PLoS neglected tropical diseases 12 (8):e0006512. doi:10.1371/journal.pntd.0006512
Semenov A, Olson JE, Rosenthal PJ (1998) Antimalarial synergy of cysteine and aspartic protease inhibitors. Antimicrobial agents and chemotherapy 42 (9):2254-2258. doi:10.1128/aac.42.9.2254
Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, Malhotra P (2013) Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America 110 (14):5392-5397. doi:10.1073/pnas.1218412110
Omara-Opyene AL, Moura PA, Sulsona CR, Bonilla JA, Yowell CA, Fujioka H, Fidock DA, Dame JB (2004) Genetic Disruption of the Plasmodium falciparum Digestive Vacuole Plasmepsins Demonstrates Their Functional Redundancy*. Journal of Biological Chemistry 279 (52):54088-54096. doi:https://doi.org/10.1074/jbc.M409605200
Hogg T, Nagarajan K, Herzberg S, Chen L, Shen X, Jiang H, Wecke M, Blohmke C, Hilgenfeld R, Schmidt CL (2006) Structural and Functional Characterization of Falcipain-2, a Hemoglobinase from the Malarial Parasite Plasmodium falciparum*. Journal of Biological Chemistry 281 (35):25425-25437. doi:https://doi.org/10.1074/jbc.M603776200
Aratikatla EK, Kalamuddin M, Rana KC, Datta G, Asad M, Sundararaman S, Malhotra P, Mohmmed A, Bhattacharya AK (2021) Combating multi-drug resistant malaria parasite by inhibiting falcipain-2 and heme-polymerization: Artemisinin-peptidyl vinyl phosphonate hybrid molecules as new antimalarials. Eur J Med Chem 220:113454. doi:10.1016/j.ejmech.2021.113454
Singh A, Kalamuddin M, Mohmmed A, Malhotra P, Hoda N (2019) Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage. RSC Advances 9 (67):39410-39421. doi:10.1039/C9RA06571G
Shenai BR, Lee BJ, Alvarez-Hernandez A, Chong PY, Emal CD, Neitz RJ, Roush WR, Rosenthal PJ (2003) Structure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrobial agents and chemotherapy 47 (1):154-160. doi:10.1128/aac.47.1.154-160.2003
Marques AF, Esser D, Rosenthal PJ, Kassack MU, Lima LM (2013) Falcipain-2 inhibition by suramin and suramin analogues. Bioorganic & medicinal chemistry 21 (13):3667-3673. doi:10.1016/j.bmc.2013.04.047
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.