Validation of the Novel QSAR-SBDD Integrated Methodology in Quest To Develop NCES as Antitubercular Agents

Authors

  • Sarfaraz Ahmed
  • A. K. Saxena
  • A. Elphine Prabahar

Keywords:

Tuberculosis, ATP synthase, QSAR, SBDD, Docking, quinoline

Abstract

A novel hybrid methodology combining Quantitative Structure–Activity Relationship (QSAR) and Structure-Based Drug Design (SBDD) methodologies has been established for the identification of new antitubercular medicines.  This comprehensive technique resulted in the development of a predictive QSAR model characterized by five essential parameters: the amino acid residues Glu65, Ala66, Phe69, the water molecule HOH2018, and an indicator variable.  Validation of the model using a structurally heterogeneous external dataset resulted in a correlation coefficient of 0.79, indicating robust prediction performance.  Structural and binding research highlighted the essential significance of stereochemistry in ligand-target interactions, with Glu65 identified as the most significant residue influencing both binding affinity and biological activity.  These findings underscore the efficacy of the QSAR-SBDD integration and offer a logical framework for the development of effective and selective antitubercular agents.

Downloads

Download data is not yet available.

References

Organization WH (2025) Tuberculosis. https://www.who.int/news-room/fact-sheets/detail/tuberculosis.

Berida T, Lindsley CW (2024) Move over COVID, Tuberculosis Is Once again the Leading Cause of Death from a Single Infectious Disease. Journal of Medicinal Chemistry 67 (24):21633-21640. doi:10.1021/acs.jmedchem.4c02876

Organization WH (2024) Tuberculosis: Multidrug-resistant (MDR-TB) or rifampicin-resistant TB (RR-TB). https://www.who.int/news-room/questions-and-answers/item/tuberculosis-multidrug-resistant-tuberculosis-(mdr-tb).

Dheda K, Mirzayev F, Cirillo DM, Udwadia Z, Dooley KE, Chang K-C, Omar SV, Reuter A, Perumal T, Horsburgh CR, Murray M, Lange C (2024) Multidrug-resistant tuberculosis. Nature Reviews Disease Primers 10 (1):22. doi:10.1038/s41572-024-00504-2

Yadav S (2024) BPaLM Regimen Against Drug-Resistant Tuberculosis in India: A Need of the Hour. Cureus 16 (9):e68421. doi:10.7759/cureus.68421

Satapathy P, Itumalla R, Neyazi A, Nabizai Taraki AM, Khatib MN, Gaidhane S, Zahiruddin QS, Rustagi S, Neyazi M (2024) Emerging bedaquiline resistance: A threat to the global fight against drug-resistant tuberculosis. Journal of Biosafety and Biosecurity 6 (1):13-15. doi:https://doi.org/10.1016/j.jobb.2024.01.001

Derendinger B, Dippenaar A, de Vos M, Huo S, Alberts R, Tadokera R, Limberis J, Sirgel F, Dolby T, Spies C, Reuter A, Folkerts M, Allender C, Lemmer D, Van Rie A, Gagneux S, Rigouts L, te Riele J, Dheda K, Engelthaler DM, Warren R, Metcalfe J, Cox H, Theron G (2023) Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. The Lancet Microbe 4 (12):e972-e982. doi:10.1016/S2666-5247(23)00172-6

Nimmo C, Ortiz AT, Tan CCS, Pang J, Acman M, Millard J, Padayatchi N, Grant AD, O’Donnell M, Pym A, Brynildsrud OB, Eldholm V, Grandjean L, Didelot X, Balloux F, van Dorp L (2024) Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis. Genome Medicine 16 (1):34. doi:10.1186/s13073-024-01289-5

Timm J, Bateson A, Solanki P, Paleckyte A, Witney AA, Rofael SAD, Fabiane S, Olugbosi M, McHugh TD, Sun E (2023) Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS Global Public Health 3 (10):e0002283. doi:10.1371/journal.pgph.0002283

Günther G, Mhuulu L, Diergaardt A, Dreyer V, Moses M, Anyolo K, Ruswa N, Claassens M, Niemann S, Nepolo E (2024) Bedaquiline Resistance after Effective Treatment of Multidrug-Resistant Tuberculosis, Namibia. Emerging infectious diseases 30 (3):568-571. doi:10.3201/eid3003.240134

Lange C, Vasiliu A, Mandalakas AM (2023) Emerging bedaquiline-resistant tuberculosis. The Lancet Microbe 4 (12):e964-e965. doi:10.1016/S2666-5247(23)00321-X

Goulooze SC, Cohen AF, Rissmann R (2015) Bedaquiline. British journal of clinical pharmacology 80 (2):182-184. doi:10.1111/bcp.12613

Niazi SK, Mariam Z (2024) Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. 17 (1):22

Batool M, Ahmad B, Choi S (2019) A Structure-Based Drug Discovery Paradigm. International journal of molecular sciences 20 (11). doi:10.3390/ijms20112783

Wei H, McCammon JA (2024) Structure and dynamics in drug discovery. npj Drug Discovery 1 (1):1. doi:10.1038/s44386-024-00001-2

Chakraborti S, Sachchidanand S (2023) SBDD and Its Challenges. In: Kar S, Leszczynski J (eds) Current Trends in Computational Modeling for Drug Discovery. Springer International Publishing, Cham, pp 1-24. doi:10.1007/978-3-031-33871-7_1

Pala D, Clark DE (2024) Caught between a ROCK and a hard place: current challenges in structure-based drug design. Drug Discovery Today 29 (9):104106. doi:https://doi.org/10.1016/j.drudis.2024.104106

Ahmed S, Prabahar AE, and Saxena AK (2022) Molecular docking-based interactions in QSAR studies on Mycobacterium tuberculosis ATP synthase inhibitors. SAR and QSAR in Environmental Research 33 (4):289-305. doi:10.1080/1062936X.2022.2066175

Saxena AK Quantitative Structure Interaction Activity Relationship (QSIAR) as a Novel Approach to Drug Design: A Case Study of Anti-tubercular Agents. In: Saxena AK, Nandi S (eds) Global Trends in Health, Technology and Management, Cham, 2024// 2024. Springer Nature Switzerland, pp 1-20

Singh S, Roy KK, Khan SR, Kashyap VK, Sharma A, Jaiswal S, Sharma SK, Krishnan MY, Chaturvedi V, Lal J, Sinha S, Dasgupta A, Srivastava R, Saxena AK (2015) Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg Med Chem 23 (4):742-752. doi:10.1016/j.bmc.2014.12.060

Kalia D, K. S AK, Meena G, Sethi KP, Sharma R, Trivedi P, Khan SR, Verma AS, Singh S, Sharma S, Roy KK, Kant R, Krishnan MY, Singh BN, Sinha S, Chaturvedi V, Saxena AK, Dikshit DK (2015) Synthesis and anti-tubercular activity of conformationally-constrained and bisquinoline analogs of TMC207. MedChemComm 6 (8):1554-1563. doi:10.1039/C5MD00131E

Tantry SJ, Markad SD, Shinde V, Bhat J, Balakrishnan G, Gupta AK, Ambady A, Raichurkar A, Kedari C, Sharma S, Mudugal NV, Narayan A, Naveen Kumar CN, Nanduri R, Bharath S, Reddy J, Panduga V, Prabhakar KR, Kandaswamy K, Saralaya R, Kaur P, Dinesh N, Guptha S, Rich K, Murray D, Plant H, Preston M, Ashton H, Plant D, Walsh J, Alcock P, Naylor K, Collier M, Whiteaker J, McLaughlin RE, Mallya M, Panda M, Rudrapatna S, Ramachandran V, Shandil R, Sambandamurthy VK, Mdluli K, Cooper CB, Rubin H, Yano T, Iyer P, Narayanan S, Kavanagh S, Mukherjee K, Balasubramanian V, Hosagrahara VP, Solapure S, Ravishankar S, Hameed P S (2017) Discovery of Imidazo[1,2-a]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis. Journal of medicinal chemistry 60 (4):1379-1399. doi:10.1021/acs.jmedchem.6b01358

Ahmed S, E. PA, and Saxena AK (2022) Molecular docking-based interactions in QSAR studies on Mycobacterium tuberculosis ATP synthase inhibitors. SAR and QSAR in Environmental Research 33 (4):289-305. doi:10.1080/1062936X.2022.2066175

Ahmed S, Prabahar AE, Saxena AK (2023) Molecular docking-based interaction studies on imidazo[1,2-a] pyridine ethers and squaramides as anti-tubercular agents. SAR QSAR Environ Res 34 (6):435-457. doi:10.1080/1062936x.2023.2225872

Tantry SJ, Shinde V, Balakrishnan G, Markad SD, Gupta AK, Bhat J, Narayan A, Raichurkar A, Jena LK, Sharma S, Kumar N, Nanduri R, Bharath S, Reddy J, Panduga V, Prabhakar KR, Kandaswamy K, Kaur P, Dinesh N, Guptha S, Saralaya R, Panda M, Rudrapatna S, Mallya M, Rubin H, Yano T, Mdluili K, Cooper CB, Balasubramanian V, Sambandamurthy VK, Ramachandran V, Shandil R, Kavanagh S, Narayanan S, Iyer P, Mukherjee K, Hosagrahara VP, Solapure S, Hameed P S, Ravishankar S (2016) Scaffold morphing leading to evolution of 2,4-diaminoquinolines and aminopyrazolopyrimidines as inhibitors of the ATP synthesis pathway. MedChemComm 7 (5):1022-1032. doi:10.1039/C5MD00589B

Schrödinger L, NewYork, NY, 2009. LigPrep version 2.3.

Preiss L, Langer JD, Yildiz Ö, Eckhardt-Strelau L, Guillemont JE, Koul A, Meier T (2015) Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Science advances 1 (4):e1500106. doi:10.1126/sciadv.1500106

Schrödinger L, NewYork, NY, 2009. Protein preparation wizard.

Schrödinger L, NewYork, NY, 2009. Glide version 5.5.

BIOVIA DS, San Diego, 2020. Discovery Studio Visualizer 20.1.0.

Ahmed S, Prabahar AE, and Saxena AK (2023) Molecular docking-based interaction studies on imidazo[1,2-a] pyridine ethers and squaramides as anti-tubercular agents. SAR and QSAR in Environmental Research 34 (6):435-457. doi:10.1080/1062936X.2023.2225872

Downloads

Published

2025-06-30

How to Cite

1.
Ahmed S, Saxena AK, Prabahar AE. Validation of the Novel QSAR-SBDD Integrated Methodology in Quest To Develop NCES as Antitubercular Agents. J Neonatal Surg [Internet]. 2025Jun.30 [cited 2025Jul.10];14(32S):2788-95. Available from: https://jneonatalsurg.com/index.php/jns/article/view/7827