Synthesis, PASS Prediction, Molecular Docking and Pharmacokinetic Studies of Newer 1,3,4-Thiadiazole Hybrids Of P-Thymol as Antidiabetic Agents

Authors

  • Dattatraya S. Kale
  • Rahul T. Bhoi
  • Ganesh R. Borse
  • Santosh B. Katariya
  • Sanjay B. Sonawale

Keywords:

1,3,4-thiadiazole, Para-thymol, α-amylase inhibitor,, Pharmacokinetic study, Antidiabetic

Abstract

A novel series of amide analogs of p-thymol, clubbed with 1,3,4-thiadiazole (8a-8l) was developed and synthesized. This was achieved by attaching the phenolic group of the naturally occurring p-thymol core to 1,3,4-thiadiazole, followed by coupling with various substituted acyl chloride moieties through an amino linker, resulting in a good yield (83-91 %). The identities of all the synthesized compounds were confirmed using spectroscopic methods, including 1H NMR, 13C NMR, mass spectrometry, and FT-IR. In this study, the biological activity profile of the designed analogs was predicted using the PASS prediction tool, indicating their potential antidiabetic activity. The compounds were synthesized, and their activities were experimentally assessed at a concentration of 62.5 500 µL. The observed experimental activity was aligned with the predictions made by PASS. Molecular docking studies were conducted to determine the binding free energies of all the compounds at the active site of isomaltase from S. cerevisiae (PDB ID: 3A47). Compounds 8a and 8d exhibited excellent docking scores. The synthesized compounds were evaluated for their in vitro antidiabetic activity and showed moderate-to-good results. Notably, compounds 8a, 8e, 8j, and 8l exhibited significant antidiabetic activity compared with the positive standard acarbose. A comparative analysis of Lipinski’s parameters and compound activity showed that all compounds adhered to Lipinski’s rule of five.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ortiz-Martínez, M., González-González, M., Martagón, A. J., Hlavinka, V., Willson, R. C., & Rito-Palomares, M. (2022). Current Diabetes Reports, 22(3), 95–115. https://doi.org/10.1007/s11892-022-01453-4

Patil, S. R., Chavan, A. B., Bhopale, J. V., Patel, A. M., & Chavan, P. D. (2023). Journal for Research in Applied Sciences and Biotechnology, 2(4), 73–79. https://doi.org/10.55544/jrasb.2.4.9

Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R., & Zinman, B. (2007). Diabetes care, 30(3), 753-759.https://doi: 10.2337/dc07-9920

Patel, A., Sindhu, D. K., Arora, N., Singh, R. P., Pruthi, V., & Pruthi, P. A. (2015). Bioresource Technology, 197, 91-98. https://doi.org/10.1016/j.biortech.2015.08.039

Chandrasekaran, P., & Weiskirchen, R. (2024). The role of obesity in type 2 diabetes mellitus—An overview. International journal of molecular sciences, 25(3), 1882. https://doi.org/10.3390/ijms25031882

Sowers, J. R. (2013). Hypertension, 61(5), 943-947. https://doi.org/10.1161/HYPERTENSIONAHA.111.00612

Tienda-Vázquez, M. A., Elizondo-Luévano, J. H., Parra-Saldívar, R., Melchor-Martínez, E. M., Lara-Ortiz, J. S., Scheckhuber, C. Q., & Luna-Sosa, B. (2023). Processes, 11(5), 1299. https://doi.org/10.3390/pr11051299

Mishra, A. K., Pannu, A., Sahoo, P. K., Pandey, M., & Dewangan, H. K. (2024). Current Traditional Medicine, 10(3). https://doi.org/10.2174/2215083810666230501212125

Alqathama, A., Makkawi, S., Alluhiabi, G., Aljahani, L., Jabal, S., Alhomoud, F., Khan, O., & Baghdadi, H. (2020). BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-020-2854-4

Bourhia, M., Ait Haj Said, A., Ali Naser, F., Khlil, N., Benbacer, L., El Gueddari, F., Mostafa Abdelmageed, W., Naamane, A., Mohammed Almarfadi, O., & Abdelaziz Shahat, A. (2019). Evidence-Based Complementary and Alternative Medicine, 2019(1), 1–9. https://doi.org/10.1155/2019/1613457

Cox-Georgian, D., Ramadoss, N., Dona, C., & Basu, C. (2019). Medicinal plants: from farm to pharmacy, 333-359. https://doi.org/10.1007/978-3-030-31269-5_15

McCadden, C. A., Alsup, T. A., Ghiviriga, I., & Rudolf, J. D. (2025). Biocatalytic diversification of abietic acid in Streptomyces. Journal of Industrial Microbiology and Biotechnology, kuaf003. https://doi.org/10.1093/jimb/kuaf003

Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. B., Nainu, F., & Simal-Gandara, J. (2022). Food Chemistry: X, 13, 100217. https://doi.org/10.1016/j.fochx.2022.100217

Minakshi, Prakash, S., Kumari, H., & Kumar, A. (2024). Natural Bioactive Products from Marine Fungi Against Bacterial Infection. In Fungi Bioactive Metabolites: Integration of Pharmaceutical Applications (pp. 241-259). Singapore: Springer Nature Singapore. https://doi.org/ 10.1007/978-981-99-5696-8_8

Alagawany, M., Abdelnour, S. A., Farag, M. R., & Elnesr, S. S. (2020). Reviews in Aquaculture, 13(1), 632–641. https://doi.org/10.1111/raq.12490

Ezzat Abd El-Hack, M., Alagawany, M., Ragab Farag, M., Tiwari, R., Karthik, K., Dhama, K., Zorriehzahra, J., & Adel, M. (2016). Journal of Essential Oil Research, 28(5), 365–382. https://doi.org/10.1080/10412905.2016.1153002

Panigrahi, A., & Pulukuri, K. K. (2024). Streamlined Synthesis of Eudesmane Sesquiterpenoids through Site-switchable Olefin Functionalization Strategy. https://doi.org/ 10.26434/chemrxiv-2023-3fldg-v4

ZHANG, L., LI, Y., & MAO, J. (2024). Research progress on natural products against hepatocellular carcinoma. Biocell, 48(6). https://doi.org/ 10.32604/biocell.2024.050396

Palamarchuk, I. V., Shulgau, Z. T., Dautov, A. Y., Sergazy, S. D., & Kulakov, I. V. (2022). Organic & Biomolecular Chemistry, 20(45), 8962-8976. https://doi.org/10.1039/D2OB01772E

Gummidi, L., Kerru, N., Ebenezer, O., Awolade, P., Sanni, O., Islam, M. S., & Singh, P. (2021). Bioorganic Chemistry, 115, 105210.https://doi.org/10.1016/j.bioorg.2021.105210

Ali, Z., Rehman, W., Rasheed, L., Alzahrani, A. Y., Ali, N., Hussain, R., ... & Abdellattif, M. H. (2024). ACS omega, 9(7), 7480-7490.https://doi.org/10.1021/acsomega.3c05854

Worthington, V. (1993). Worthington enzyme manual, 36-41.

Ahmed, I. T. (2007). Transition Metal Chemistry, 32(5), 674-682.https://doi.org/10.1007/s11243-007-0232-4

Poroikov, V. V., Filimonov, D. A., Borodina, Y. V., Lagunin, A. A., & Kos, A. (2000). Journal of chemical information and computer sciences, 40(6), 1349-1355. https://doi.org/10.1021/ci000383k

Marwaha, A., Goel, R. K., & Mahajan, M. P. (2007). Bioorganic & Medicinal Chemistry Letters, 17(18), 5251-5255. https://doi.org/10.1016/j.bmcl.2007.06.071

Trott, O., & Olson, A. J. (2010). Journal of computational chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334

MarvinSketch 19.19.0, 2019, ChemAxon.

Biovia, Dassault Systèmes, BIOVIA Discovery Studio Visualizer 2017, v.12.0., San Diego: DassaultSystèmes, (2016).

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 1-13. https://doi.org/10.1038/srep42717

Zhao, Y. H., Abraham, M. H., Le, J., Hersey, A., Luscombe, C. N., Beck, G., & Cooper, I. (2002). Pharmaceutical research, 19(10), 1446-1457.https://doi.org/10.1023/A:1020444330011

Bojarska, J., Remko, M., Breza, M., Madura, I. D., Kaczmarek, K., Zabrocki, J., & Wolf, W. M. (2020). Molecules, 25(5), 1135. https://doi.org/10.3390/molecules25051135

Ames, B. N., Gurney, E. G., Miller, J. A., & Bartsch, H. (1972). Proceedings of the National Academy of Sciences, 69(11), 3128-3132.https://doi.org/10.1073/pnas.69.11.3128

Downloads

Published

2025-06-26

How to Cite

1.
S. Kale D, T. Bhoi R, R. Borse G, B. Katariya S, B. Sonawale S. Synthesis, PASS Prediction, Molecular Docking and Pharmacokinetic Studies of Newer 1,3,4-Thiadiazole Hybrids Of P-Thymol as Antidiabetic Agents. J Neonatal Surg [Internet]. 2025Jun.26 [cited 2025Jul.20];14(32S):2339-53. Available from: https://jneonatalsurg.com/index.php/jns/article/view/7743