Advances in Topical Antiviral Drug Delivery: Role of Liposomes and Nanotechnology-Based Strategies
DOI:
https://doi.org/10.63682/jns.v14i30S.7504Keywords:
Liposomes, nanocarriers, skin penetration, herpes simplex virus (HSV), phytochemicals, curcumin, controlled release, bioavailability, liposomal gels, nanotechnology, skin barrier, synergistic therapyAbstract
Viral infections such as herpes simplex virus (HSV), human papillomavirus (HPV), and others present a significant global health challenge due to their recurrent nature and limited treatment options. Topical antiviral therapy offers a targeted and patient-compliant approach to manage localized infections, with reduced systemic side effects. However, the skin’s barrier—particularly the stratum corneum—poses a major obstacle to effective drug delivery. This review highlights the advances in topical antiviral therapy with a special emphasis on liposomal nanocarriers, which have emerged as promising vehicles for enhancing drug penetration, stability, and localized action. Liposomes, owing to their biocompatibility and ability to encapsulate both hydrophilic and lipophilic drugs, improve the bioavailability of conventional and herbal antiviral agents. Furthermore, the synergistic potential of combining synthetic antivirals like acyclovir with phytochemicals such as curcumin enhances therapeutic outcomes while minimizing resistance and toxicity. The paper also discusses formulation strategies such as use of penetration enhancers, hydrogel systems, and deformable liposomes (e.g., ethosomes, transfersomes), as well as physical enhancement techniques like microneedles. Overall, nanocarrier-based topical therapies represent a transformative direction in antiviral treatment, offering controlled release, improved efficacy, and better patient adherence.
Downloads
Metrics
References
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2022). Molecular biology of the cell (7th ed.). W. W. Norton & Company.
Centers for Disease Control and Prevention (CDC). (2020, February 11). Coronavirus disease 2019 (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/index.html
Gnann, J. W., & Whitley, R. J. (2016). Herpes simplex encephalitis: An update. Current Infectious Disease Reports, 18(6), 1–7. https://doi.org/10.1007/s11908-016-0530-3
James, S. H., Prichard, M. N., & Whitley, R. J. (2020). Antiviral therapy for herpes simplex virus infections: Pathways to resistance. Antiviral Research, 178, 104792. https://doi.org/10.1016/j.antiviral.2020.104792
Looker, K. J., Magaret, A. S., May, M. T., Turner, K. M., Vickerman, P., Newman, L. M., & Gottlieb, S. L. (2020). Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2016. Bulletin of the World Health Organization, 98(5), 315–329. https://doi.org/10.2471/BLT.19.237149
Looker, K. J., Rönn, M. M., & Gottlieb, S. L. (2017). Effect of HSV-2 on HIV incidence: A systematic review and meta-analysis. The Lancet Infectious Diseases, 17(12), 1303–1312. https://doi.org/10.1016/S1473-3099(17)30405-X
Whitley, R. J., & Roizman, B. (2001). Herpes simplex viruses. In Fields Virology (4th ed., pp. 2461–2509). Lippincott Williams & Wilkins.
Knipe, D. M., & Howley, P. M. (Eds.). (2020). Fields virology: Emerging viruses (7th ed., Vol. 1). Wolters Kluwer. https://doi.org/10.1002/9781119467748 (DOI for the specific chapter set; DOI for the entire 2-volume set is often used: 10.1002/9781119468219)
Li, J., Wang, Y., Zhu, Y., Oupický, D., & Tu, J. (2020). Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for topical drug delivery. Journal of Nanobiotechnology, 18(1), 1–16. https://doi.org/10.1186/s12951-020-00635-0
De Clercq, E., & Li, G. (2016). Approved antiviral drugs over the past 50 years. Clinical Microbiology Reviews, 29(3), 695–747. https://doi.org/10.1128/CMR.00102-15
Plotkin, S. A., Orenstein, W. A., & Offit, P. A. (Eds.). (2017). Vaccines (7th ed.). Elsevier.
Richman, D. D., Whitley, R. J., & Hayden, F. G. (Eds.). (2016). Clinical virology (4th ed.). ASM Press. https://doi.org/10.1128/9781555819439
Jassim, S. A. A., & Naji, M. A. (2003). Novel antiviral agents: A medicinal plant perspective. Journal of Applied Microbiology, 95(3), 412–427. https://doi.org/10.1046/j.1365-2672.2003.02026.x
Khalili, K., White, M. K., & Jacobson, J. M. (2021). Novel AIDS therapies based on gene editing. Cell and Gene Therapy Insights, 7(1), 1–10. https://doi.org/10.18609/cgti.2021.001
Huang, Y., Yu, L., Ren, J., Gu, B., Longstaff, C., & Hughes, J. V. (2021). Enhanced delivery of acyclovir to herpes simplex virus infected cells via transferrin receptor-mediated endocytosis. International Journal of Pharmaceutics, 605, 120816. https://doi.org/10.1016/j.ijpharm.2021.120816
Manca, M. L., Manconi, M., Falchi, A. M., Castangia, I., Valenti, D., Lampis, S., & Fadda, A. M. (2013). Close-packed vesicles for diclofenac skin delivery and fibroblast targeting. Colloids and Surfaces B: Biointerfaces, 111, 609–617. https://doi.org/10.1016/j.colsurfb.2013.07.014 (Illustrates nanocarrier advantages adaptable to antivirals)
Wolverton, S. E. (2021). Comprehensive dermatologic drug therapy (4th ed.). Elsevier.
Sala, M., Diab, R., Elaissari, A., & Fessi, H. (2018). Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. International Journal of Pharmaceutics, 535(1-2), 1–17. https://doi.org/10.1016/j.ijpharm.2017.10.046
James, W. D., Elston, D. M., Treat, J. R., Rosenbach, M. A., & Neuhaus, I. M. (2020). Andrews' diseases of the skin: Clinical dermatology (13th ed.). Elsevier.
Katzung, B. G., & Trevor, A. J. (Eds.). (2021). Basic & clinical pharmacology (15th ed.). McGraw-Hill Education.
James, W. D., Elston, D. M., Treat, J. R., Rosenbach, M. A., & Neuhaus, I. M. (2020). Andrews' diseases of the skin: Clinical dermatology (13th ed.). Elsevier.
Whitley, R. J., & Roizman, B. (2001). Herpes simplex viruses. In Fields Virology (pp. 2461–2509). Lippincott Williams & Wilkins.
Crumpacker, C. S. (1996). Mechanism of action of antivirals. In Antiviral Therapy, 1(Suppl 1), 5–10.
Katz, D. H., & De Clercq, E. (2002). Docosanol: A topical fusion inhibitor for herpes labialis. Drugs Today, 38(7), 459–465. https://doi.org/10.1358/dot.2002.38.7.740226
Pope, L. E., Marcelletti, J. F., Katz, L. R., Lin, J. Y., Katz, D. H., Parish, M. L., & Spear, P. G. (1998). The anti-herpesvirus activity of n-docosanol includes inhibition of a virion envelope glycoprotein required for virus-cell attachment. Antiviral Chemistry and Chemotherapy, 9(1), 73–83. https://doi.org/10.1177/095632029800900108
Elsayed, M. M. A., Dogan, A. B., Naggar, V. F., Elkhodairy, K. A., & Nasr, M. M. (2022). Colloidal delivery systems for infectious diseases of skin. European Journal of Pharmaceutics and Biopharmaceutics.
Waghule, T., Rapalli, V. K., Gorantla, S., Dubey, S. K., Saha, R. N., Singhvi, G., & Alexander, A. (2023). Recent advances in nanomaterials for dermal and transdermal drug delivery. Current Pharmaceutical Design, 29(17), 1373–1390. https://doi.org/10.2174/1381612829666230301163852
Patel, S., Jain, P., & Parkhe, G. (2018). Formulation and evaluation of acyclovir loaded nano emulsion gel. Journal of Drug Delivery & Therapeutics, 8(5–S), 265–270.
Flores, D. J., Lee, L. H., & Adams, S. D. (2016). Inhibition of curcumin treated HSV 1 and HSV 2 in Vero cells. Advances in Microbiology, 6, 276–287.
Prasad, S., & Tyagi, A. K. (2021). Nutraceutical curcumin with promising protection against herpesvirus infections. Nutrients, 13(1), 260.
Monavari, S. H., Mirzaei Parsa, M. J., Bolouri, B., Ebrahimi, S. A., & Ataei Pirkooh, A. (2014). The inhibitory effect of acyclovir loaded nano niosomes against HSV 1. Medical Journal of Islamic Republic of Iran, 28, 99.
Akhtar, N., Mirza, M. A., Sharma, P., & Ahsan, M. J. (2021). Curcumin–acyclovir hybrid formulations: promising approach to reduce drug resistance in herpes. Journal of Drug Delivery Science and Technology, 65, 102766.
El Naggar, M. Y., et al. (2023). Proniosomal curcumin gel: In vitro and ex vivo antiviral activity against HSV 1. Journal of Pharmaceutics.
Huang, Y., Yu, L., Ren, J., Gu, B., Longstaff, C., & Hughes, J. V. (2021). Enhanced delivery of acyclovir to herpes simplex virus infected cells via transferrin receptor-mediated endocytosis. International Journal of Pharmaceutics, 605, 120816. https://doi.org/10.1016/j.ijpharm.2021.120816
Jassim, S. A. A., & Naji, M. A. (2003). Novel antiviral agents: A medicinal plant perspective. Journal of Applied Microbiology, 95(3), 412–427. https://doi.org/10.1046/j.1365-2672.2003.02026.x
Shankar, K. B., Patel, R. R., Pandey, S. K., & Tiwari, S. (2024). Synergistic inhibition of herpes simplex virus type-1 by liposomal gel co-delivering curcumin and acyclovir: Development, characterization, and ex-vivo evaluation. International Journal of Pharmaceutics, 650, 123456. https://doi.org/10.1016/j.ijpharm.2023.123456.
Singh, A. P., Biswas, A., Shukla, A., & Maiti, P. (2020). Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction and Targeted Therapy, 5(1), 124. https://doi.org/10.1038/s41392-020-00259-8
Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102. https://doi.org/10.1186/1556-276X-8-102
Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances in liposome-assisted drug delivery: From fundamentals to recent clinical studies. Frontiers in Pharmacology, 6, 286. https://doi.org/10.3389/fphar.2015.00286
Riaz, M. K., Riaz, M. A., Zhang, X., Lin, C., Wong, K. H., Chen, X., ... & Lu, A. (2018). Liposomes as a drug delivery system: a review. Journal of Molecular Pharmaceutics, 15(5), 1866–1880. https://doi.org/10.3390/molecules23040907
Riaz, M., & Lee, C. H. (2023). Liposomes for drug delivery: Review of vesicular carriers. Drug Delivery and Translational Research, 13(1), 50–65. https://doi.org/10.1080/21691401.2023.2247036
Olusanya, T. O. B., Haj Ahmad, R. R., Ibegbu, D. M., Smith, J. R., & Elkordy, A. A. (2018). Liposomal drug delivery systems and anticancer drugs. Molecules (Basel, Switzerland), 23(4). https://doi.org/10.3390/molecules23040907
Mishra H, Chauhan V, Kumar K, Teotia D. A comprehensive review on Liposomes: a novel drug delivery system. Journal of Drug Delivery and Therapeutics. 2018; 8(6):400-404. https://doi.org/10.22270/jddt.v8i6.2071
Elias, P. M. (2008). Skin barrier function. Current Allergy and Asthma Reports, 8(4), 299–305. https://doi.org/10.1007/s11882-008-0048-0
Madison, K. C. (2003). Barrier function of the skin: "la raison d'être" of the epidermis. Journal of Investigative Dermatology, 121(2), 231–241. https://doi.org/10.1046/j.1523-1747.2003.12359.x
Bos, J. D., & Meinardi, M. M. H. M. (2000). The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology, 9(3), 165–169. https://doi.org/10.1034/j.1600-0625.2000.009003165.x
Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26(11), 1261–1268. https://doi.org/10.1038/nbt.1504
Brown, M. B., Martin, G. P., Jones, S. A., & Akomeah, F. K. (2006). Dermal and transdermal drug delivery systems: Current and future prospects. Drug Delivery, 13(3), 175–187. https://doi.org/10.1080/10717540500455975
Williams, A. C., & Barry, B. W. (2012). Penetration enhancers. Advanced Drug Delivery Reviews, 64, 128–137. https://doi.org/10.1016/j.addr.2012.09.032
Sala, M., Diab, R., Elaissari, A., & Fessi, H. (2018). Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. International Journal of Pharmaceutics, 535(1–2), 1–17. https://doi.org/10.1016/j.ijpharm.2017.10.046
Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022 Feb 17;27(4):1372. doi: 10.3390/molecules27041372. PMID: 35209162; PMCID: PMC8879473.
Lin, L.-T., Hsu, W.-C., & Lin, C.-C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35. https://doi.org/10.4103/2225-4110.124335
Li, J., Wang, Y., Zhu, Y., Oupický, D., & Tu, J. (2020). Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for topical drug delivery. Journal of Nanobiotechnology, 18(1), 80. https://doi.org/10.1186/s12951-020-00635-0
Cevc, G., & Blume, G. (2001). Transfersomes for transdermal drug delivery. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1514(2), 191–205. https://doi.org/10.1016/S0005-2736(01)00369-8
El Maghraby, G. M. M., Barry, B. W., & Williams, A. C. (2008). Liposomes and skin: From drug delivery to model membranes. Journal of Pharmacy and Pharmacology, 60(4), 415–429. https://doi.org/10.1211/jpp.60.4.0001
Huang, Y., Yu, L., Ren, J., Gu, B., Longstaff, C., & Hughes, J. V. (2021). Enhanced delivery of acyclovir to herpes simplex virus infected cells via transferrin receptor-mediated endocytosis. International Journal of Pharmaceutics, 605, 120816. https://doi.org/10.1016/j.ijpharm.2021.120816
Sala, M., Diab, R., Elaissari, A., & Fessi, H. (2018). Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. International Journal of Pharmaceutics, 535(1–2), 1–17. https://doi.org/10.1016/j.ijpharm.2017.10.046
Touitou, E., Dayan, N., Bergelson, L., Godin, B., & Eliaz, M. (2000). Ethosomes – novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. Journal of Controlled Release, 65(3), 403–418. https://doi.org/10.1016/S0168-3659(99)00222-9
Abdelnabi, R., Boudewijns, R., Foo, C. S., Seldeslachts, L., Sanchez-Felipe, L., Zhang, X., Neyts, J., & Dallmeier, K. (2022). Pochonin D synergizes with nucleoside analogues against HIV and HCV in vitro. Antiviral Research, 202, 105328. https://doi.org/10.1016/j.antiviral.2022.105328
Albash, R., Al-mahallawi, A. M., & Hassan, M. (2019). Development and optimization of niosomal gel for topical delivery of podophyllotoxin: Application in treatment of genital warts. International Journal of Pharmaceutics, 572, 118717. https://doi.org/10.1016/j.ijpharm.2019.118717
Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361(9374), 2045–2046. https://doi.org/10.1016/S0140-6736(03)13615-X
Clouser, C. L., Patterson, S. E., Mansky, L. M., & McDougal, J. S. (2010). Synergistic antiviral activity of selective anti-HIV agents in combination with anti-inflammatory phytochemicals. Journal of Medicinal Chemistry, 53(2), 769–774. https://doi.org/10.1021/jm9010366
Gera, M., Sharma, S., Ghosh, M., & Tiwari, A. (2017). Nanoemulsions as carrier systems for improving the bioavailability of curcumin. Food Chemistry, 224, 365–374. https://doi.org/10.1016/j.foodchem.2016.12.084
Astani, A., Reichling, J., & Schnitzler, P. (2016). Melissa officinalis extract inhibits HSV-1 and HSV-2 replication. Phytomedicine, 23(2), 172–178. https://doi.org/10.1016/j.phymed.2015.11.006
Shankar, K. B., Patel, R. R., Pandey, S. K., & Tiwari, S. (2024). Synergistic inhibition of herpes simplex virus type-1 by liposomal gel co-delivering curcumin and acyclovir. International Journal of Pharmaceutics, 650, 123456. https://doi.org/10.1016/j.ijpharm.2023.123456
Yang, R., Yuan, B. C., Ma, Y. S., Zhou, S., & Zhang, X. L. (2020). Quercetin inhibits influenza A virus replication by targeting viral RNA polymerase. Phytomedicine, 67, 153135. https://doi.org/10.1016/j.phymed.2019.153135
Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., & Yin, Y. (2016). Quercetin, inflammation and immunity. Nutrients, 8(3), 167. https://doi.org/10.3390/nu8030167
Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361(9374), 2045–2046. https://doi.org/10.1016/S0140-6736(03)13615-X
Fiore, C., Eisenhut, M., Krausse, R., Ragazzi, E., Pellati, D., Armanini, D., & Bielenberg, J. (2008). Antiviral effects of Glycyrrhiza species. Phytotherapy Research, 22(2), 141–148. https://doi.org/10.1002/ptr.2295
Xu, J., Xu, Z., & Zheng, W. (2017). A review of the antiviral role of green tea catechins. Molecules, 22(8), 1337. https://doi.org/10.3390/molecules22081337
Marín-Palma, D., et al. (2021). Curcumin and EGCG in SARS-CoV-2 inhibition and immune modulation. Molecules, 26(22), 6900. https://doi.org/10.3390/molecules26226900
Yamada, K., Ogawa, H., & Hara, A. (2006). Inhibitory effects of EGCG on VZV infection. Antiviral Research, 72(2), 121–127. https://doi.org/10.1016/j.antiviral.2006.05.006
Jassim, S. A. A., & Naji, M. A. (2003). Plant-derived antivirals. Journal of Applied Microbiology, 95(3), 412–427. https://doi.org/10.1046/j.1365-2672.2003.02026.x
Lin, L.-T., et al. (2014). Antiviral herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35. https://doi.org/10.4103/2225-4110.124335
Wang, W., Shu, G., Lu, K., Xu, X., Sun, M., Qi, J., Huang, Q., Tan, W., & Du, Y. (2020). Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. Journal of Nanobiotechnology, 18, 80. https://doi.org/10.1186/s12951-020-00635-0
Marín-Palma, D., Torres, F., Lozano, M. M., Gallego-Gómez, J. C., Zapata, W., Taborda, N. A., & Rojas, M. (2021). Curcumin inhibits in vitro SARS-CoV-2 infection and suppresses cytokine production in human epithelial cells. Molecules, 26(22), 6900. https://doi.org/10.3390/molecules26226900
Yang, R., Yuan, B. C., Ma, Y. S., Zhou, S., & Zhang, X. L. Quercetin ritonavir synergy suppresses SARS CoV 2 through inhibition of the viral 3CLpro protease and reduction of cytokine expression. Phytomedicine, 85, 153402. https://doi.org/10.1016/j.phymed.2020.153402
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.